Math 2211: Practice Midterm 1

Calculus 3
(1) Let $\vec{u}=\langle-2,3,6\rangle, \vec{u}=\langle-7,1,4\rangle$ and $\vec{w}=\langle 3,5,2\rangle$.
(a) Find $2 \vec{u}-3 \vec{v}+\vec{w}, \vec{u} \cdot \vec{w}$, and $\vec{u} \times \vec{v}$.
(b) Find the area of the parallelogram spanned by \vec{u} and \vec{v}.
(c) Find $\vec{u} \cdot(\vec{v} \times \vec{w})$.
(d) Find $\operatorname{proj}_{\vec{u}} \vec{v}$ and $\operatorname{comp}_{\vec{u}} \vec{v}$.
(e) The parallelogram shown here has vertices at $A(2,-1,4), B(1,0,-1), C(1,2,3)$, and D. Find the coordinate D.

(2) Solve the following problems:
(a) Find the parametric equation of the line passing through the two points $P(4,5,2)$ and $Q(-2,-1,7)$.
(b) Find the parametric equation of the line passing through the point $P(1,5,2)$ parallel to the vector $\vec{v}=\langle 2,3,2\rangle$.
(c) Find the equation of the plane passing through the points

$$
P(1,5,2), \quad Q(10,4,-1), \quad \text { and } \quad R(-1,2,-1)
$$

(d) Find an equation for the plane that passes through the point $(3,-2,1)$ normal to the vector $\vec{n}=2 \vec{i}+\vec{j}+20 \vec{k}$.
(e) Find an equation for the plane that passes through the point $(-1,6,0)$ and is perpendicular to the line $x=-1+t, y=6-2 t, z=3 t$.
(f) Find parametric equations for the line in which the planes $3 x+6 z=1$ and $2 x+2 y-z=3$ intersect. Show that the plane are orthogonal to each other.
(3) Solve the following problems:
(a) Find the set of points that are equidistant from the points $P(1,0,4)$ and $Q(6,2,-1)$.
(b) Find the distance between the following parallel planes:

$$
3 x-2 y+z=2 \quad \text { and } \quad 3 x-2 y+z=7 .
$$

(c) Find the distance from the point $(2,2,3)$ to the plane $2 x+3 y+5 z=0$.
(4) Solve the following:
(a) If $\mathbf{r}(t)=\left\langle e^{2 t}, e^{-5 t}, t\right\rangle$, find $\mathbf{r}^{\prime}(0), \mathbf{r}^{\prime \prime}(0), \mathbf{r}^{\prime}(0) \times \mathbf{r}^{\prime \prime}(0)$ and $\mathbf{T}(0)=\frac{\mathbf{r}^{\prime}(0)}{\left|\mathbf{r}^{\prime}(0)\right|}$. Also find the curvature at point $t=0$.
(b) Find $f^{\prime}(3)$, where $f(t)=\mathbf{u}(t) \cdot \mathbf{v}(t), \mathbf{u}(3)=\langle 1,3,-3\rangle, \mathbf{u}^{\prime}(3)=\langle 9,1,7\rangle$ and $\mathbf{v}(t)=\left\langle t^{2}, t, t^{3}\right\rangle$.
(c) Suppose $\vec{r}(t)=\left(e^{t} \cos t\right) \vec{i}+\left(e^{t} \sin t\right) \vec{j}$. Show that the angle between \vec{r} and \vec{a} never changes. What is the angle?
(d) Find the lengths of the curve

$$
\vec{r}(t)=(2 \cos t) \vec{i}+(2 \sin t) \vec{j}+\left(t^{2}\right) \vec{k}, \quad 0 \leq t \leq \pi / 4 .
$$

(e) Find equations for the osculating, normal, and rectifying planes of the curve $r(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ at the point $(1,1,1)$.
(f) Find parametric equations for the line that is tangent to the curve

$$
r(t)=\left\langle e^{t}, \sin t, \ln (1-t)\right\rangle, \quad \text { at the point } t=0
$$

(5) The graph of a function $f(t)$ in the $x y$-plane is the curve

$$
\mathbf{r}(t)=\langle t, f(t), 0\rangle
$$

(a) Assuming that f has first and second order derivatives, compute the curvature of this curve at a point $\mathbf{r}(t)$ as a function of $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.
Hint: the curvature is given by $\kappa=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$.
(b) In the special case $f(t)=t^{2}$, compute the curvature at the point $t=0$ and the coordinates of the center of the osculating circle at this point.
(c) Draw a graph that confirms these values.

