Math 2211: Practice Midterm 2

Calculus 3

(1) Solve the following problems.
(a) Find and sketch the domain of $f(x, y, z)=e^{\sqrt{z-x^{2}-y^{2}}}$. Find the range of f.
(b) Find the domain and range of $f(x, y)=\arcsin \left(x^{2}+y^{2}-2\right)$.
(c) Draw a contour map of $f(x, y)=x^{3}-y$.
(d)

Match the function with its graph (labeled I-VI). Give reasons for your choices
(a) $f(x, y)=|x|+|y| \quad$ (b) $f(x, y)=|x y|$
(c) $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$
(d) $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$
(e) $f(x, y)=(x-y)^{2}$
(f) $f(x, y)=\sin (|x|+|y|)$

(e)

(2) Solve the following problems:
(a) Find the limit

$$
\lim _{(x, y)->(0,0)} \frac{2 x^{2} y}{x^{2}+y^{2}}
$$

(b) Find the limit

$$
\lim _{(x, y)->(0,0)} \frac{y^{4}}{x^{4}+3 y^{4}}
$$

(c) Find the limit

$$
\lim _{(x, y)->(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}}
$$

(d) Find the limit

$$
\lim _{(x, y)->(3,0,1)} e^{-x y} \sin \left(\frac{\pi z}{2}\right)
$$

(e) Find the limit

$$
\lim _{(x, y)->(0,0)} \frac{x^{2}+\sin ^{2}(y)}{2 x^{2}+y^{2}}
$$

(f) Find the limit

$$
\lim _{(x, y)->(0,0)} \frac{2 x y^{4}}{3 x^{2}+y^{8}}
$$

(3) Solve the following problems:
(a) Find f_{x} and f_{y} of the function $f(x, y)=\int_{y}^{x} \cos \left(t^{2}\right) d t$.
(b) Find f_{x}, f_{y} and f_{z} of the function $f(x, y)=x z-5 x^{2} y^{3} z^{4}$.
(c) Find $f_{x}(3,4)$ where $f(x, y)=\ln \left(x+\sqrt{x^{2}+x y^{2}}\right)$.
(d) Find the tangent plane of $f(x, y)=\sqrt{x+e^{4 y}+x z}$ at the point $(1,0,8)$.
(e) Verify the linear approximation $\sqrt{y+\cos ^{2} x} \approx 1+\frac{1}{2} y$ at the point $(0,0)$.
(f) Verify the linear approximation $\frac{2 x+3}{4 y+1} \approx 3+2 x-12 y$ at the point $(0,0)$.
(4) Solve the following:
(a) If $z=e^{x} \sin (y)$, where $x=s t^{2}$ and $y=s^{2} t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
(b) Use chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ if $z=e^{r} \cos (\theta), r=s t$ and $\theta=\sqrt{s^{2}+5 t}$.
(c) If $z=f(x, y)$, where $x=r \cos (\theta)$ and $y=r \sin (\theta)$ then find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$. Use them to show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}
$$

(d) Find $\frac{d y}{d x}$ of the following equation

$$
\sqrt{x y}=1+x^{2} y
$$

(e) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ of the following equation

$$
x^{2}-x^{3}=\arctan (y z)
$$

(5) Solve the following:
(a) Given that $f(x, y)=\frac{y^{2}}{x}$. Find the gradient of f. Evaluate the gradient at the point $P(1,2)$. Find the rate of change of at in the direction of the vector $\vec{u}=\frac{1}{3}(2 \vec{i}+\sqrt{5} \vec{j})$.
(b) Find the directional derivative of the function $f(x, y)=(x+2 y+3 z)^{3 / 2}$ at the point $(1,2,1)$ in the direction of the vector $\langle 0,2,-1\rangle$.
(c) Find the maximum rate of change of $f(x, y)=\sin x y$ at the point $(1,0)$ and the direction in which it occurs.
(d) Show that the equation of the tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1
$$

(e) Two surfaces are called orthogonal at a point of intersection if their normal lines are perpendicular at that point. Show that surfaces with equations $F(x, y, z)=0$ and $G(x, y, z)=0$ are orthogonal at a point P where $\Delta F \neq 0$ and $\Delta G \neq 0$ if and only if

$$
F_{x} G_{x}+F_{y} G_{y}+F_{z} G_{z}=0 \quad \text { at } P .
$$

