Math 2211: Recitation 10 (T)

Naufil Sakran

(1) Solve any two the following problems:
(a) Find the area of the surface determined by the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the plane $z=-6$.
(b) Evaluate $\iiint_{E} 8 x d V$, where R is determined by the following region

(c) Write the rectangular equation $2 x^{2}-6 x+2 y^{2}+z^{2}=7$ in cylindrical coordinates
(2) Solve the following problems. (Do any two of them).
(a) Evaluate $\iiint_{E} 7\left(x^{2}+y^{2}\right) d V$ where E is determined by the following region

(b) Evaluate $\iiint_{E} z d V$, where E is enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=16$.
(c) Write the rectangular equation $x^{2}+2 x+y^{2}+z^{2}+3 z=4$ in spherical coordinates
(Bonus) Solve the following integrals. (Do any one of them).
(a) Use spherical coordinates to evaluate $\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V$, where B is the ball with center the origin and radius 1 .
(b) Use the given transformation to evaluate the integral $\iint_{R}(x-6 y) d A$, where R is the triangular region with vertices $(0,0),(5,1)$ and $(1,5)$; with transformation $x=5 u+v, y=u+5 v$.

