Math 2211: Recitation 11 (T)

Naufil Sakran

(1) Do all three the following problems:
(a) Evaluate the line integral $\int_{C} x y d s$ where $C: x=t^{2}, y=2 t, 0 \leq t \leq 1$.
(b) Evaluate the line integral $\int_{C} x e^{y} d x$ where C is the arc of the curve $x=e^{y}$ from $(1,0)$ to $(e, 1)$.
(c) Let $\mathbf{F}(x, y, z)=\langle\sin x, \cos y, x z\rangle$ and $\mathbf{r}(t)=\left\langle t^{3},-t^{2}, t\right\rangle$ where $0 \leq t \leq 1$. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.
(2) Solve the following problems. (Do any two of them).
(a) Use the given transformation to evaluate the integral $\iint_{R}(x-6 y) d A$, where R is the triangular region with vertices $(0,0),(5,1)$ and $(1,5)$; with transformation $x=5 u+v, y=u+5 v$.
(b) Let $\mathbf{F}(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle$ and $C: \mathbf{r}(t)=\left\langle t+\sin \left(\frac{\pi t}{2}\right), t+\cos \left(\frac{\pi t}{2}\right)\right\rangle$ where $t \in[0,1]$. Find a function f such that $\mathbf{F}=\nabla f$ and use it to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(c) Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\int_{C} x y^{2} d x+2 x^{2} y d y, \quad C$ is the triangle with vertices $(0,0),(2,2)$ and $(2,4)$.
(Bonus) Solve the following integrals. (Do any one of them).
(a) Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y, \quad C$ is the boundary of the region enclosed by $y=x^{2}$ and $x=y^{2}$.
(b) Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle, \quad C$ is the circle $x^{2}+y^{2}=25$ oriented clockwise.

