Math 2211: Recitation 4 (T)

Naufil Sakran

(1) Solve any two the following problems:
(a) Find the distance between the given parallel planes:

$$
5 x-2 y+z=10, \quad 10 x-4 y+2 z=3
$$

(b) Find the domain of the vector function

$$
\mathbf{r}(t)=\ln (t-1) \mathbf{i}+\tan (t) \mathbf{j}+\frac{9 t^{2}-1}{t-\frac{1}{3}} \mathbf{k}
$$

(c) Find the limit $\lim _{t \rightarrow 0} \mathbf{r}(t)$ where

$$
\mathbf{r}(t)=\frac{e^{t}-t-1}{t^{2}} \mathbf{i}+\frac{t^{2}}{\sin ^{2}(t)} \mathbf{j}+\left(t^{2}+t-2\right) \mathbf{k}
$$

(2) Solve the following problems. (Do any two of them).
(a) Find the parametric equation for the line of intersection of the planes $x+2 y+3 z=3$ and $x-y+z=3$.
(b) Find an equation of the plane that contains the curve with the given vector equation

$$
\mathbf{r}(t)=\langle 4 t, \sin (t), t-10\rangle
$$

(c) At what points does the curve $\mathbf{r}(t)=\left\langle t, 0,5 t-t^{2}\right\rangle$ intersects the paraboloid $z=x^{2}+y^{2}$.
(Bonus) Solve the following integrals. (Do any one of them).
(a) If $\mathbf{r}(t)=\left\langle e^{2 t}, e^{-5 t}, t\right\rangle$, find $\mathbf{r}^{\prime}(0), \mathbf{r}^{\prime \prime}(0), \mathbf{r}^{\prime}(0) \times \mathbf{r}^{\prime \prime}(0)$ and $\mathbf{T}(0)=\frac{\mathbf{r}^{\prime}(0)}{\left|\mathbf{r}^{\prime}(0)\right|}$.
(b) Find $f(4)$, where $f(t)=\mathbf{u}(t) \cdot \mathbf{v}(t), \mathbf{u}(3)=\langle 1,3,-3\rangle, \mathbf{u}^{\prime}(3)=\langle 9,1,7\rangle$ and $\mathbf{v}(t)=\left\langle t^{2}, t, t^{3}\right\rangle$.

