Math 2211: Recitation 5 (T)

Naufil Sakran

(1) Solve any two the following problems:
(a) Compute

$$
\int\left(4 t^{\frac{3}{2}} \vec{i}+(t+7) \sqrt{t} \vec{k}\right) d t
$$

(b) Find the length of the curve

$$
\mathbf{r}(t)=\left\langle 4 t, t^{2}, \frac{1}{6} t^{3}\right\rangle, \quad 0 \leq t \leq 1 .
$$

(c) Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$ of the following vector function

$$
\mathbf{r}(t)=3 \sin (t) \mathbf{i}+3 \cos (t) \mathbf{j} .
$$

(2) Solve the following problems. (Do any two of them).
(a) Let C be the curve of intersection of the parabolic cylinder $x^{2}=2 y$, and the surface $3 z=x y$. Find the length of C from the origin to the point $\left(2,2, \frac{4}{3}\right)$.
(b) Find the curvature of the below curve at any general point

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
$$

(c) Find the unit normal and binormal vectors for the circular helix

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle
$$

(Bonus) Solve the following integrals. (Do any one of them).
(a) Show that the curvature of a circle of radius a is $\frac{1}{a}$.
(b) Use the formula $\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+(f(x))^{2}\right]^{3 / 2}}$ to find the curvature of $y=2 x^{4}$.

