Math 2211: Recitation 5 (T)

Naufil Sakran

- (1) Solve any \mathbf{two} the following problems:
 - (a) Compute

$$\int \left(4t^{\frac{3}{2}} \; \vec{i} + (t+7)\sqrt{t} \; \vec{k}\right) dt$$

(b) Find the length of the curve

$$\mathbf{r}(t) = \left\langle 4t, t^2, \frac{1}{6}t^3 \right\rangle, \quad 0 \le t \le 1.$$

(c) Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$ of the following vector function $\mathbf{r}(t) = 3 \sin(t) \mathbf{i} + 3 \cos(t) \mathbf{j}$.

- (2) Solve the following problems. (Do any two of them).
 - (a) Let C be the curve of intersection of the parabolic cylinder $x^2 = 2y$, and the surface 3z = xy. Find the length of C from the origin to the point $(2, 2, \frac{4}{3})$.

(b) Find the curvature of the below curve at any general point

 $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle.$

(c) Find the unit normal and binormal vectors for the circular helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle.$

(Bonus) Solve the following integrals. (Do any one of them).

(a) Show that the curvature of a circle of radius a is $\frac{1}{a}$.

(b) Use the formula $\kappa(x) = \frac{|f''(x)|}{[1+(f(x))^2]^{3/2}}$ to find the curvature of $y = 2x^4$.