Math 2211: Recitation 7 (T)

Naufil Sakran

- (1) Solve any **two** the following problems:
 - (a) Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial s}$ of

$$z = \arcsin(x - y), \quad x = s^2 + t^2, \quad y = 1 - 2st.$$

Hint: $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1 - x^2}}.$

(b) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ of the equation $yz = \ln (x + z).$

(c) Let W(s,t) = F(u(s,t), v(s,t)), where F, u and v are differentiable, and

$$u(1,0) = 2, \quad v(1,0) = 3,$$

$$u_s(1,0) = -2, \quad v_s(1,0) = 5$$

$$u_t(1,0) = 6, \quad v_t(1,0) = 4$$

$$F_u(2,3) = -1 \quad F_v(2,3) = 10.$$

Find $W_s(1, 0)$ and $W_t(1, 0)$.

- (2) Solve the following problems. (Do any two of them).
 - (a) Find the directional derivative of the function f(x, y) = √x + 3y + x²y³ at the point (3, 2) in the direction of the vector v = (2, 5). *Hint: Find the unit vector* ŷ first.

(b) Find the maximum rate of change of $f(x, y, z) = \frac{x+y}{z}$ at the point (1, 1, -1) and the direction in which it occurs.

(c) Verify the linear approximation

$$z - e^{x^2 - y^2} \approx 2x + 2y - z + 1$$
, at the point $(1, -1, 1)$.

(Bonus) Solve the following integrals. (Do any one of them).

(a) If
$$z = f(x, y)$$
, where $x = s + t$ and $y = s - t$, show that

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial s}\right) \left(\frac{\partial z}{\partial t}\right)$$

(b) Find the limit

$$\lim_{(x,y)\to (0,0)} \frac{xy^4}{x^2+y^8}.$$

·