Math 2211: Recitation 7 (T)

Naufil Sakran

(1) Solve any two the following problems:
(a) Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial s}$ of

$$
z=\arcsin (x-y), \quad x=s^{2}+t^{2}, \quad y=1-2 s t .
$$

Hint: $\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}}$.
(b) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ of the equation

$$
y z=\ln (x+z)
$$

(c) Let $W(s, t)=F(u(s, t), v(s, t))$, where F, u and v are differentiable, and

$$
\begin{aligned}
u(1,0)=2, & v(1,0)=3 \\
u_{s}(1,0)=-2, & v_{s}(1,0)=5 \\
u_{t}(1,0)=6, & v_{t}(1,0)=4 \\
F_{u}(2,3)=-1 & F_{v}(2,3)=10
\end{aligned}
$$

Find $W_{s}(1,0)$ and $W_{t}(1,0)$.
(2) Solve the following problems. (Do any two of them).
(a) Find the directional derivative of the function $f(x, y)=\sqrt{x+3 y}+x^{2} y^{3}$ at the point $(3,2)$ in the direction of the vector $\vec{v}=\langle 2,5\rangle$.
Hint: Find the unit vector \hat{v} first.
(b) Find the maximum rate of change of $f(x, y, z)=\frac{x+y}{z}$ at the point $(1,1,-1)$ and the direction in which it occurs.
(c) Verify the linear approximation

$$
z-e^{x^{2}-y^{2}} \approx 2 x+2 y-z+1, \text { at the point }(1,-1,1) .
$$

(Bonus) Solve the following integrals. (Do any one of them).
(a) If $z=f(x, y)$, where $x=s+t$ and $y=s-t$, show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial s}\right)\left(\frac{\partial z}{\partial t}\right)
$$

(b) Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}
$$

