Math 2211: Recitation 8 (T)

Naufil Sakran

(1) Solve any two the following problems:
(a) Find the local maximum and minimum values and saddle point of the function

$$
f(x, y)=3-x^{4}+2 x^{2}-y^{2} .
$$

(b) Use Langrange multipliers to find the extreme values of the function $f(x, y)=x^{2}-y^{2}$ subject to the constraint $x^{2}+y^{2}=49$.
(c) Find the local maximum and minimum values and saddle point of the function

$$
f(x, y)=y^{2}-4 y \cos (x) .
$$

(2) Solve the following problems. (Do any one of them).
(a) Consider the function $f(x, y)=x^{2}+y^{2}+x^{2} y+5$, defined on the set $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$. Find the absolute maximum and minimum values of f on the set D.
(b) Find the absolute maximum and minimum values of f on the set D where $f(x, y)=x^{3}-3 x-y^{3}+12 y+2, \quad D$ is a quadrilateral whose vertices are $(-2,3),(2,3),(2,2),(-2,-2)$.
(c) Find the dimensions of the rectangular box with largest volume if the total surface area is given as $16 \mathrm{~cm}^{2}$.
(Bonus) Solve the following integrals. (Do any two of them).
(a) Use Langrange multipliers to find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point $(18,4,0)$.
(b) Evaluate the double integral on R where

$$
\iint_{R}\left(4 x-2 y^{2}\right), \quad R=\{(x, y): 0 \leq x \leq 5,0 \leq y \leq 3\}
$$

(c) Find three positive integers whose sum is 240 and whose product is maximum.

