Math 2211: Recitation 9 (T)

Naufil Sakran

(1) Solve any two the following problems:
(a) Let $R=\{(x, y) \mid-1 \leq x \leq 1,-2 \leq y \leq 2\}$, evaluate the integral

$$
\iint_{R} \sqrt{1-x^{2}} d A
$$

(b) Evaluate

$$
\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x
$$

(c) Let $R=[0,1] \times[0,2]$. Evaluate

$$
\iint_{R} x y e^{x^{2} y} d A
$$

(2) Solve the following problems. (Do any two of them).
(a) Find the extreme values of f on the region described by the inequality given as

$$
f(x, y)=e^{-x y}, \quad x^{2}+4 y^{2} \leq 1
$$

(b) Evaluate

$$
\iint_{R} \frac{x}{1+x y} d A, \quad R=[0,1] \times[0,1]
$$

(c) Evaluate

$$
\int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} e^{\sin \theta} d \theta d r
$$

(Bonus) Solve the following integrals. (Do any one of them).
(a) Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.
(b) Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d A$, where R is the region in the upper half plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
Hint: Change to polar coordinates.

