Generalizing and Classifying Irreducible Numerical Monoids

Naufil Sakran
Joint work with Dr. Mahir Bilen Can
Department of Mathematics
Tulane University

$$
\text { April 5, } 2024
$$

Table of Contents

(1) Numerical Semigroups
(2) Unipotent Numerical Monoids
(3) Symmetric and Pseudo-Symmetric UNM
(4) Main Results

Table of Contents

(1) Numerical Semigroups

(2) Unipotent Numerical Monoids

(3) Symmetric and Pseudo-Symmetric UNM

(4) Main Results

Numerical Semigroups

We assume $\mathbb{N}=\{0,1,2,3, \rightarrow\}$ throughout the talk.

Definition

A subset $\mathcal{S} \subseteq \mathbb{N}$ is a numerical semigroup if

- $0 \in \mathcal{S}$.
- If $a, b \in \mathcal{S}$ then $a+b \in \mathcal{S}$.
- Complement of \mathcal{S} in \mathbb{N} is finite.

Numerical Semigroups

We assume $\mathbb{N}=\{0,1,2,3, \rightarrow\}$ throughout the talk.

Definition

A subset $\mathcal{S} \subseteq \mathbb{N}$ is a numerical semigroup if

- $0 \in \mathcal{S}$.
- If $a, b \in \mathcal{S}$ then $a+b \in \mathcal{S}$.
- Complement of \mathcal{S} in \mathbb{N} is finite.

$$
\begin{aligned}
& \text { Example } \\
& \text { Let } \mathcal{S}=\{0,3,5,6,8,9,10, \rightarrow\}=\langle 3,5\rangle \text {. }
\end{aligned}
$$

Invariants

Let \mathcal{S} be a numerical semigroup.

- Multiplicity $\mathrm{m}(\mathcal{S})$ is the smallest non-zero number in \mathcal{S}.
- Gap set $\mathrm{G}(\mathcal{S})$ is the set of elements of the complement of \mathcal{S} in $\mathbb{Z}_{\geq 0}$. Genus $\mathrm{g}(\mathcal{S})$ is the cardinality of $\mathrm{G}(\mathcal{S})$.

Invariants

Let \mathcal{S} be a numerical semigroup.

- Multiplicity $\mathrm{m}(\mathcal{S})$ is the smallest non-zero number in \mathcal{S}.
- Gap set $\mathrm{G}(\mathcal{S})$ is the set of elements of the complement of \mathcal{S} in $\mathbb{Z}_{\geq 0}$. Genus $\mathrm{g}(\mathcal{S})$ is the cardinality of $\mathrm{G}(\mathcal{S})$.
- Frobenius element $\mathrm{F}(\mathcal{S})$ is the largest number in the gap set $\mathrm{N}(\mathcal{S})$.
- Conductor $\mathrm{c}(\mathcal{S})=\mathrm{F}(\mathcal{S})+1$.
- The Pseudo-Frobenius set is defined as $\operatorname{PF}(\mathcal{S}):=\{x \in \mathrm{G}(\mathcal{S}): x+\mathcal{S} \subseteq \mathcal{S}\}$.

Invariants

Let \mathcal{S} be a numerical semigroup.

- Multiplicity $\mathrm{m}(\mathcal{S})$ is the smallest non-zero number in \mathcal{S}.
- Gap set $\mathrm{G}(\mathcal{S})$ is the set of elements of the complement of \mathcal{S} in $\mathbb{Z}_{\geq 0}$. Genus $\mathrm{g}(\mathcal{S})$ is the cardinality of $\mathrm{G}(\mathcal{S})$.
- Frobenius element $\mathrm{F}(\mathcal{S})$ is the largest number in the gap set $\mathrm{N}(\mathcal{S})$.
- Conductor $\mathrm{c}(\mathcal{S})=\mathrm{F}(\mathcal{S})+1$.
- The Pseudo-Frobenius set is defined as $\operatorname{PF}(\mathcal{S}):=\{x \in \mathrm{G}(\mathcal{S}): x+\mathcal{S} \subseteq \mathcal{S}\}$.
- Sporadic elements $\mathrm{N}(\mathcal{S}):=\{x \in \mathcal{S}: x<\mathrm{F}(\mathcal{S})\}$. We denote $\mathrm{n}(\mathcal{S})=|\mathrm{N}(\mathcal{S})|$.
- Minimal generating set of \mathcal{S} is denoted by e(S).

Example

Let $\mathcal{S}=\{0,3,6,8,9,10, \rightarrow\}=\langle 3,8,10\rangle$.

- $\mathrm{m}(\mathcal{S})=3$.
- $G(\mathcal{S})=\{1,2,4,5,7\}$ and $g(\mathcal{S})=5$.

Example

Let $\mathcal{S}=\{0,3,6,8,9,10, \rightarrow\}=\langle 3,8,10\rangle$.

- $\mathrm{m}(\mathcal{S})=3$.
- $\mathrm{G}(\mathcal{S})=\{1,2,4,5,7\}$ and $\mathrm{g}(\mathcal{S})=5$.
- $F(\mathcal{S})=7$.
- $c(\mathcal{S})=8$.
- $\operatorname{PF}(\mathcal{S})=\{5,7\}$

Example

Let $\mathcal{S}=\{0,3,6,8,9,10, \rightarrow\}=\langle 3,8,10\rangle$.

- $\mathrm{m}(\mathcal{S})=3$.
- $\mathrm{G}(\mathcal{S})=\{1,2,4,5,7\}$ and $\mathrm{g}(\mathcal{S})=5$.
- $F(\mathcal{S})=7$.
- $c(\mathcal{S})=8$.
- $\operatorname{PF}(\mathcal{S})=\{5,7\}$
- $\mathrm{N}(\mathcal{S})=\{0,3,6\}$ and $\mathrm{n}(\mathcal{S})=3$.
- $e(S)=3$

Definition

A numerical semigroup \mathcal{S} is said to be irreducible if it cannot be expressed as the intersection of two distinct numerical semigroups properly containing \mathcal{S}.

Definition

A numerical semigroup \mathcal{S} is said to be irreducible if it cannot be expressed as the intersection of two distinct numerical semigroups properly containing \mathcal{S}.

Example

The numerical semigroup $\mathcal{S}=\langle 3,7,11\rangle$ is irreducible.

Definition

A numerical semigroup \mathcal{S} is said to be irreducible if it cannot be expressed as the intersection of two distinct numerical semigroups properly containing \mathcal{S}.

Example

The numerical semigroup $\mathcal{S}=\langle 3,7,11\rangle$ is irreducible.

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Example

$$
\mathcal{S}=\langle 3,5\rangle=\{0,3,5,6,8,9, \rightarrow\}
$$

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Example

$$
\mathcal{S}=\langle 3,5\rangle=\{0,3,5,6,8,9, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,7\}$ so, $\mathrm{g}(\mathcal{S})=4$. Note $\mathrm{F}(\mathcal{S})=7$.

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Example

$$
\mathcal{S}=\langle 3,5\rangle=\{0,3,5,6,8,9, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,7\}$ so, $\mathrm{g}(\mathcal{S})=4$. Note $\mathrm{F}(\mathcal{S})=7$. So, $\frac{7+1}{2}=4$ implies \mathcal{S} is Symmetric.

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Example

$$
\mathcal{S}=\langle 3,5\rangle=\{0,3,5,6,8,9, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,7\}$ so, $\mathrm{g}(\mathcal{S})=4$. Note $\mathrm{F}(\mathcal{S})=7$. So, $\frac{7+1}{2}=4$ implies \mathcal{S} is Symmetric.

Example

$$
\mathcal{S}=\langle 3,7,11\rangle=\{0,3,6,7,9,10,11, \rightarrow\}
$$

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Example

$$
\mathcal{S}=\langle 3,5\rangle=\{0,3,5,6,8,9, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,7\}$ so, $\mathrm{g}(\mathcal{S})=4$. Note $\mathrm{F}(\mathcal{S})=7$. So, $\frac{7+1}{2}=4$ implies \mathcal{S} is Symmetric.

Example

$$
\mathcal{S}=\langle 3,7,11\rangle=\{0,3,6,7,9,10,11, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,5,8\}$ so, $\mathrm{g}(\mathcal{S})=5$. Note $\mathrm{F}(\mathcal{S})=8$.

Definition

Let \mathcal{S} be a numerical semigroup. Let $\mathrm{g}(\mathcal{S})$ denote the genus of \mathcal{S}.

- We say that S is symmetric if $\mathrm{g}(\mathcal{S})=\frac{1+\mathrm{F}(\mathcal{S})}{2}$.
- We say that S is pseudo-symmetric if $\mathrm{g}(\mathcal{S})=\frac{2+\mathrm{F}(\mathcal{S})}{2}$.

Example

$$
\mathcal{S}=\langle 3,5\rangle=\{0,3,5,6,8,9, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,7\}$ so, $\mathrm{g}(\mathcal{S})=4$. Note $\mathrm{F}(\mathcal{S})=7$. So, $\frac{7+1}{2}=4$ implies \mathcal{S} is Symmetric.

Example

$$
\mathcal{S}=\langle 3,7,11\rangle=\{0,3,6,7,9,10,11, \rightarrow\}
$$

We have $\mathrm{G}(\mathcal{S})=\{1,2,4,5,8\}$ so, $\mathrm{g}(\mathcal{S})=5$. Note $\mathrm{F}(\mathcal{S})=8$. So, $\frac{8+2}{2}=5$ implies \mathcal{S} is Pseudo-symmetric.

Abstract

Theorem Let \mathcal{S} be an irreducible numerical semigroup. Then \mathcal{S} is either symmetric or pseudo-symmetric. Moreover, every symmetric or pseudo-symmetric semigroup are irreducible.

Applications

- Let \mathcal{S} be a numerical semigroup. Let \mathbb{K} be algebraically closed and define $\mathbb{K}[\mathcal{S}]=\oplus_{\boldsymbol{s} \in \mathcal{S}} \mathbb{K} t^{s}$. Consider the ring $\mathbb{K}[[\mathcal{S}]]$. [Kun70] showed that $\mathbb{K}[[\mathcal{S}]]$ is a Gorenstein ring if and only if \mathcal{S} is symmetric.

Applications

- Let \mathcal{S} be a numerical semigroup. Let \mathbb{K} be algebraically closed and define $\mathbb{K}[\mathcal{S}]=\oplus_{\boldsymbol{s} \in \mathcal{S}} \mathbb{K} t^{s}$. Consider the ring $\mathbb{K}[[\mathcal{S}]]$. [Kun70] showed that $\mathbb{K}[[\mathcal{S}]]$ is a Gorenstein ring if and only if \mathcal{S} is symmetric.
Remark: A Noetherian ring R is Gorenstein if R has finite injective dimension as an R-module.

Table of Contents

(1) Numerical Semigroups
(2) Unipotent Numerical Monoids

(3) Symmetric and Pseudo-Symmetric UNM

(4) Main Results

Unipotent Numerical Semigroups

Let

$$
\mathbf{U}(n, \mathbb{N}):=\left\{\left(\begin{array}{ccccc}
1 & x_{12} & x_{13} & \cdots & x_{1 n} \\
0 & 1 & x_{23} & \cdots & x_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right):\left\{x_{i j}\right\}_{1<i<j<n} \in \mathbb{N}\right\}
$$

Unipotent Numerical Semigroups

Let

$$
\mathbf{U}(n, \mathbb{N}):=\left\{\left(\begin{array}{ccccc}
1 & x_{12} & x_{13} & \cdots & x_{1 n} \\
0 & 1 & x_{23} & \cdots & x_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right):\left\{x_{i j}\right\}_{1<i<j<n} \in \mathbb{N}\right\}
$$

We fix a finitely generated monoid $\mathbf{G} \subseteq \mathbf{U}(n, \mathbb{N})$.

Unipotent Numerical Semigroups

Let

$$
\mathbf{U}(n, \mathbb{N}):=\left\{\left(\begin{array}{ccccc}
1 & x_{12} & x_{13} & \cdots & x_{1 n} \\
0 & 1 & x_{23} & \cdots & x_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right):\left\{x_{i j}\right\}_{1<i<j<n} \in \mathbb{N}\right\}
$$

We fix a finitely generated monoid $\mathbf{G} \subseteq \mathbf{U}(n, \mathbb{N})$. A subset $\mathcal{S} \subseteq \mathbf{G}$ is a unipotent numerical semigroup if

- $\mathbf{1}_{n} \in \mathcal{S}$.
- If $A, B \in \mathcal{S}$ then $A B \in \mathcal{S}$.
- Complement of \mathcal{S} in \mathbf{G} is finite.

For Ease

Let us fix $\mathbf{G}=\mathbf{P}(n, \mathbb{N})$ where

$$
\mathbf{P}(n, \mathbb{N}):=\left\{\left(\begin{array}{ccccc}
1 & x_{12} & x_{13} & \cdots & x_{1 n} \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right):\left\{x_{1 j}\right\}_{1<j \leq n} \in \mathbb{N}\right\} \quad\left(\cong \mathbb{N}^{n-1}\right)
$$

For Ease

Let us fix $\mathbf{G}=\mathbf{P}(n, \mathbb{N})$ where

$$
\mathbf{P}(n, \mathbb{N}):=\left\{\left(\begin{array}{ccccc}
1 & x_{12} & x_{13} & \cdots & x_{1 n} \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right):\left\{x_{1 j}\right\}_{1<j \leq n} \in \mathbb{N}\right\} \quad\left(\cong \mathbb{N}^{n-1}\right)
$$

We can simply write an elements of $\mathbf{P}(n, \mathbb{N})$ as $\left(a_{1}, \cdots, a_{n-1}\right)$ where $a_{i} \in \mathbb{N}$.

Example (k-th Fundamental monoid)

Let

$$
\mathbf{P}_{k}(n):=\left\{\left(x_{j}\right)_{1<j \leq n-1} \in \mathbf{P}(n, \mathbb{N}): \max _{j} x_{j} \geq k\right\}
$$

Example (k-th Fundamental monoid)

Let

$$
\mathbf{P}_{k}(n):=\left\{\left(x_{j}\right)_{1<j \leq n-1} \in \mathbf{P}(n, \mathbb{N}): \max _{j} x_{j} \geq k\right\} .
$$

Figure: This is $\mathbf{P}_{5}(3)$

Example

Let $\mathcal{S} \subseteq \mathbf{P}(3)$ and consider \mathcal{S} plotted as

Figure: $\mathcal{S}=\left\langle(1,1),(2,1),(1,2),(4,1),(1,4), \mathbf{P}_{5}\right\rangle$

Notation

(1) From now on, \mathbf{G} denotes $\mathbf{P}(n, \mathbb{N})$.
(2) We let \mathbf{G}_{k} denote the corresponding k-th Fundamental monoid $\mathbf{P}_{k}(n, \mathbb{N})$.

Notation

(1) From now on, \mathbf{G} denotes $\mathbf{P}(n, \mathbb{N})$.
(2) We let \mathbf{G}_{k} denote the corresponding k-th Fundamental monoid $\mathbf{P}_{k}(n, \mathbb{N})$.
(3) An asterisk on a set denotes the set minus the identity element e.g. $\mathbf{G}^{*}=\mathbf{G} \backslash \mathbf{1}_{n}$ where $\mathbf{1}_{n}$ denote the $n \times n$ identity matrix.
(4) We will denote an arbitrary Unipotent Numerical Monoid in G by \mathcal{S}.

Invariants

Invariants

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}.

- Gap set $\mathrm{G}(\mathcal{S})$ is the set of elements of the complement of \mathcal{S} in \mathbf{G}. Genus $\mathrm{g}(\mathcal{S})=|\mathrm{G}(\mathcal{S})|$.
- Generating number $r(\mathcal{S})=\min \left\{k \in \mathbb{N}: \mathbf{G}_{k} \subseteq \mathcal{S}\right\}$.

Invariants

Invariants

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}.

- Gap set $\mathrm{G}(\mathcal{S})$ is the set of elements of the complement of \mathcal{S} in \mathbf{G}. Genus $\mathrm{g}(\mathcal{S})=|\mathrm{G}(\mathcal{S})|$.
- Generating number $r(\mathcal{S})=\min \left\{k \in \mathbb{N}: \mathbf{G}_{k} \subseteq \mathcal{S}\right\}$.
- Sporadic elements $\mathrm{N}(\mathcal{S}):=\mathcal{S} \backslash \mathbf{G}_{\mathrm{r}(\mathcal{S})}$ and $\mathrm{n}(\mathcal{S})=|\mathrm{N}(\mathcal{S})|$.
- Minimal generating set of \mathcal{S} is denoted by e(S).

Example

Let $\mathcal{S}=\langle(1,1),(1,2),(1,4),(2,1),(4,1)\rangle \sqcup \mathbf{G}_{5}$ in $\mathbf{G}=\mathbf{P}(3, \mathbb{N})$.

(0,9)									
(0, 8)									
(0, 7)									
(0, 6)									
(0, 5)	$(1,5)$								
	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$					
		$(2,3)$	$(3,3)$	$(4,3)$					
	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$					
	$(1,1)$	$(2,1)$		$(4,1)$	'(5, 1)				
(0,0)					(5,0)	$(6,0)$	$(7,0)$	$(8,0)$	$(9,0)$

$\mathrm{r}(\mathcal{S})=5, \quad \mathrm{~g}(\mathcal{S})=10, \quad \mathrm{e}(\mathcal{S})=17, \quad \mathrm{n}(\mathcal{S})=15$

Definition

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. The Frobenius set of \mathcal{S} is defined as

$$
\mathrm{F}(\mathcal{S}):=\left\{A \in \mathbf{G}: A \notin \mathcal{S} \text { and } A \mathbf{G}^{*} \subseteq \mathcal{S}\right\} .
$$

Definition

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. The Frobenius set of \mathcal{S} is defined as

$$
\mathrm{F}(\mathcal{S}):=\left\{A \in \mathbf{G}: A \notin \mathcal{S} \text { and } A \mathbf{G}^{*} \subseteq \mathcal{S}\right\}
$$

Definition

Let \mathcal{S} be a unipotent numerical monoid in G. The Pseudo-Frobenius set of \mathcal{S} is defined as

$$
\operatorname{PF}(\mathcal{S}):=\left\{A \in \mathbf{G}: A \notin \mathcal{S} \text { and } A \mathcal{S}^{*} \subseteq \mathcal{S}\right\}
$$

Definition

A unipotent numerical monoid \mathcal{S} in \mathbf{G} is said to be irreducible if it cannot be expressed as the intersection of two distinct unipotent numerical monoids properly containing \mathcal{S}.

Example (Not Irreducible)

Let $\mathcal{S}=\langle(1,1),(1,2),(1,4),(2,1),(4,1)\rangle \sqcup \mathbf{G}_{5}$ in \mathbf{G}.

Example (Not Irreducible)

Let $\mathcal{S}=\langle(1,1),(1,2),(1,4),(2,1),(4,1)\rangle \sqcup \mathbf{G}_{5}$ in \mathbf{G}.

$$
\mathrm{F}(\mathcal{S})=\{(0,4),(1,3),(3,1),(4,0)\}, \quad \operatorname{PF}(\mathcal{S})=\mathrm{F}(\mathcal{S}) \cup\{(0,3),(3,0)\}
$$

Example (Irreducible)

Let $\mathcal{S}=\langle(1,1),(2,0),(2,2),(3,0),(3,1)\rangle \sqcup \mathbf{G}_{4}$ in \mathbf{G}.

$\mathrm{F}(\mathcal{S})=\{(3,2)\}, \quad \mathrm{PF}(\mathcal{S})=\mathrm{F}(\mathcal{S})$

Table of Contents

(1) Numerical Semigroups
(2) Unipotent Numerical Monoids
© Symmetric and Pseudo-Symmetric UNM

(4) Main Results

Definition

Let \mathcal{S} be an irreducible unipotent numerical monoid in \mathbf{G}.

- Then \mathcal{S} is called symmetric if for every $A \in \mathbf{G} \backslash \mathcal{S}$, we have $\mathrm{F}(\mathcal{S}) \cap(A \mathcal{S}) \neq \emptyset$.

Definition

Let \mathcal{S} be an irreducible unipotent numerical monoid in \mathbf{G}.

- Then \mathcal{S} is called symmetric if for every $A \in \mathbf{G} \backslash \mathcal{S}$, we have $F(\mathcal{S}) \cap(A \mathcal{S}) \neq \emptyset$.
- Then \mathcal{S} is called pseudo-symmetric if for every $A \in \mathbf{G} \backslash \mathcal{S}$, we have at least one of the following 2 cases:
(1) We have $A^{2} \in \mathrm{~F}(\mathcal{S})$.
(2) We have $\mathrm{F}(\mathcal{S}) \cap(A \mathcal{S}) \neq \emptyset$.

Symmetric Example

Example

Let $\mathcal{S}=\langle(1,1),(2,0),(2,2),(3,0),(3,1)\rangle \sqcup \mathbf{G}_{4}$ in \mathbf{G}.

Pseudo-Symmetric Example

Example

Let $\mathcal{S}=\langle(1,2),(2,0),(2,1)\rangle \sqcup \mathbf{G}_{3}$ in \mathbf{G}.

Table of Contents

(1) Numerical Semigroups

(2) Unipotent Numerical Monoids

(3) Symmetric and Pseudo-Symmetric UNM

(4) Main Results

Observation

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. If \mathcal{S} is irreducible then $|\mathrm{F}(\mathcal{S})|=1$

Observation

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. If \mathcal{S} is irreducible then $|F(\mathcal{S})|=1$

Lemma (Can, S. 23)

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. The following statements are equivalent.

- \mathcal{S} is irreducible.

Observation

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. If \mathcal{S} is irreducible then $|F(\mathcal{S})|=1$

Lemma (Can, S. 23)

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. The following statements are equivalent.

- \mathcal{S} is irreducible.
- \mathcal{S} is maximal with respect to set inclusion in the set of unipotent numerical monoid \mathcal{S} such that $\mathrm{F}(\mathcal{S}) \cap \mathcal{T}=\emptyset$.

Observation

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. If \mathcal{S} is irreducible then $|F(\mathcal{S})|=1$

Lemma (Can, S. 23)

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. The following statements are equivalent.

- \mathcal{S} is irreducible.
- \mathcal{S} is maximal with respect to set inclusion in the set of unipotent numerical monoid \mathcal{S} such that $\mathrm{F}(\mathcal{S}) \cap \mathcal{T}=\emptyset$.
Furthermore, if $|\mathrm{F}(\mathcal{S})|=1$, then we can add the following equivalent statement to the above list.
- \mathcal{S} is maximal with respect to set inclusion in the set of unipotent numerical monoid \mathcal{S} such that $\mathrm{F}(\mathcal{S})=\mathrm{F}(\mathcal{T})$.

Theorem (Can, S. 23)
Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. If $|\mathrm{F}(\mathcal{S})|=1$ and for every $A \in \mathbf{G} \backslash \mathcal{S}$, we have $\mathrm{F}(\mathcal{S}) \cap A \mathcal{S} \neq \emptyset$ then \mathcal{S} is irreducible.

Theorem (Can, S. 23)

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. If $|\mathrm{F}(\mathcal{S})|=1$ and for every $A \in \mathbf{G} \backslash \mathcal{S}$, we have $\mathrm{F}(\mathcal{S}) \cap A \mathcal{S} \neq \emptyset$ then \mathcal{S} is irreducible.

Remark: This shows that the condition of irreducibility in symmetricity can be dropped and be replaced by $|\mathrm{F}(\mathcal{S})|=1$.

Definition

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G}. We define \mathcal{S} to be symmetric if $|\mathrm{F}(\mathcal{S})|=1$ and for every $A \in \mathbf{G} \backslash \mathcal{S}$, we have $\mathrm{F}(\mathcal{S}) \cap A \mathcal{S} \neq \emptyset$.

Main Result

Theorem (Can, S. 23)

Let \mathcal{S} be a unipotent numerical monoid. If \mathcal{S} is irreducible, then \mathcal{S} is either symmetric or pseudo-symmetric.

Future directions \& problems

(1) Connection to commutative algebra.
(2) Characterize irreducibility with respect to the set of divisors

$$
\mathbf{D}(X):=\left\{A \in \mathcal{S}: A \leq_{\mathcal{S}, t} X\right\} .
$$

(3) Derive connection to Weierstrass semigroup of multiple points on a curve X.
(4) Connection to algebraic coding theory.

Future directions \& problems

(1) Connection to commutative algebra.
(2) Characterize irreducibility with respect to the set of divisors

$$
\mathbf{D}(X):=\left\{A \in \mathcal{S}: A \leq_{\mathcal{S}, t} X\right\}
$$

(3) Derive connection to Weierstrass semigroup of multiple points on a curve X.
(4) Connection to algebraic coding theory.
(5) We look forward to generalizing it to linear algebraic groups. We know that $\mathbf{G}=\mathbf{R} \ltimes \mathbf{U}(n)$.

References

[Kun70] Ernst Kunz. "The value-semigroup of a one-dimensional Gorenstein ring". In: Proceedings of the American Mathematical Society 25.4 (1970), pp. 748-751.
[ADG20] Abdallah Assi, Marco D’Anna, and Pedro A García-Sánchez. Numerical semigroups and applications. Vol. 3. Springer Nature, 2020.
[CSca] Mahir Bilen Can and Naufil Sakran. "On Generalized Wilf Conjectures". In: arXiv preprint arXiv:2306.05530 (2023 To appear in Portugaliae Mathematica).

THANK YOU!!!

