Unipotent Wilf Conjecture

Mahir Bilen Can¹

Tulane University

Wilf Conjecture

Let *S* be a complement finite submonoid of \mathbb{N}_0 , (a.k.a numerical semigroup).

- The conductor of *S*, denoted by *c*(*S*) is the smallest integer c such that $c + \mathbb{N} \subseteq S$.
- The sporadic elements of *S*, are elements in *S* that are less than c. We denote their cardinality by n(S).
- The embedding dimension, *e*(*S*) of *S*, is the cardinality of the minimal generating set of *S*\{0}.

In 1978, Wilf conjectured that [1] for any numerical semigroup S, we have

 $c(S) \leq e(S)n(S)$

Previous Generalization

Let S be a complement finite submonoid of \mathbb{N}_0^d (a.k.a generalized numerical semigroup). Let \leq be a partial order on \mathbb{N}_{0}^{d} such that for $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in \mathbb{N}_0^d, x \le y$ if and only if $x_i \leq y_i$ for all $i = 1, \ldots, r$. Let $H(S) = \mathbb{N}_0^d \setminus S$. We define

• The conductor of *S*, denoted by c(*S*) is the cardinality of the set

 $\{x \in \mathbb{N}_0^d : x \leq h \text{ for some } h \in H(S)\}$

• Let n(S) denote the cardinlity of the set

 $\{x \in S : x \leq h \text{ for some } h \in H(S)\}$

• Let e(S) denote the cardinality of the minimal set of generators of S.

Generalized Wilf Conjecture [2] states that

 $dc(S) \leq e(S)n(S)$

Naufil Sakran²

Notations	Imp
Let G be a unipotent complex linear algebraic group and let $M = G_{\mathbb{N}}$. Let $S \subseteq M$ be complement finite submonoid. We define	Let G trian Defir
• The generating number of S is defined as $\mathbf{r}_{M}(S) = \min\{k \in \mathbb{N} : \mathbf{U}(n, \mathbb{N}_{0})_{\mathbf{r}_{M}(S)} \subseteq S\}.$	P(
• $\mathbf{d}_{M} := \dim G.$ • $\mathbf{c}_{M}(S) := \mathbf{r}(S)^{\mathbf{d}_{M}}.$ (Conductor of S.)	The p the a
 n_M(S) := S\U(n, N)_{r_M(S)} + 1. e(S) := min{ G : G generates S\{1_n}}. g(S) := M\S . (Genus of S relative to M.) 	P(n, If S ⊆ then

Unipotent Wilf Conjecture!!!

Let G be an unipotent algebraic group. If S be a complement finite submonoid of the arithmetic submonoid $M = G_N$, then we have $\mathbf{d}_{M}\mathbf{c}_{M}(S) \leq \mathbf{e}(S)\mathbf{n}_{M}(S).$

UWC holds for thick family.

portant families

 $G = U(n, \mathbb{C})$ be the group unipotent upper ngular $n \times n$ matrices with entries in \mathbb{C} . ine $M \subseteq G_{\mathbb{N}}$ as

$$(n, \mathbb{N}_0) := \left\{ \begin{pmatrix} 1 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} : a_i \in \mathbb{N}_0 \right\}$$

previous generalization is a special case of above M. Define

 \mathbb{N}_0)_k = {(x_{ij}) : $k \leq \max_{1 \leq i < j \leq n} \{x_{ij}\}$ }. \subseteq *M* be a complement finite submonoid

 $P(n, \mathbb{N}_0)_k \subseteq S$ for some large k.

Connection with Algebraic Geometry

is 0.

References

- [1] Herbert S Wilf. problem". 1978.
- Springer, 2020.
- [3] Seon Jeong Kim. points on a curve.
- Submitted, 2022.

Contact Information

- Email: nsakran@tulane.edu

For Tulane University

Let $X = \{ [x; y; z] \in \mathbb{P}^2 : x^3 - y^2 * z = 0 \}$ be a smooth projective variety of genus 1. Putting z = 1, we get the affine veriety $Y = V(x^3 - y^2)$. Let P = (1, 1), $Q = (1, -1) \in Y$. For any $f = \frac{g}{h} \in k(X), (f)_{\infty} = \operatorname{ord}_{P}(h), \text{ where }$ $\operatorname{ord}_{P}(h) := \max\{k : h \in \mathfrak{m}_{P}^{k}, h \notin \mathfrak{m}_{P}^{k+1}\}\$ For the point P and Q, let $\mathfrak{m}_P = (x - y)$ and $\mathfrak{m}_Q = (x + y)$ be the maximal ideal of the localization at P and Q respectively. As $\left(\frac{x+y}{(x-y)(x+y)}\right)_{\infty} = \left(\frac{x+y}{x^2+x^3}\right)_{\infty} =$, so there are no positive integer *n* for which $(f)_{\infty} \neq n$. With Macaulay2, one can see that genus of the curve

A circle-of-lights algorithm for the "money-changing" The American Mathematical Monthly, 85(7):562–565,

[2] Carmelo Cisto, Michael DiPasquale, Gioia Failla, Zachary Flores, Chris Peterson, and Rosanna Utano. A generalization of Wilf's Conjecture for generalized numerical semigroups.

In Semigroup Forum, volume 101, pages 303–325.

On the index of the Weierstrass semigroup of a pair of Archiv der Mathematik, 62(1):73–82, 1994.

[4] Mahir Bilen Can and Naufil Sakran. On Generalized Wilf Conjecture.

• Web: www.naufilsakran.com