Unipotent Wilf Conjecture

Mahir Bilen Can ${ }^{1} \quad$ Naufil Sakran ${ }^{2}$

Tulane University

Tulane University

Wilf Conjecture

Let S be a complement finite submonoid of \mathbb{N}_{0}, (a.k.a numerical semigroup).

- The conductor of S, denoted by $c(S)$ is the smallest integer c such that $c+\mathbb{N} \subseteq S$.
- The sporadic elements of S, are elements in S that are less than c. We denote their cardinality by $n(S)$.
- The embedding dimension, $e(S)$ of S, is the cardinality of the minimal generating set of $S \backslash\{0\}$.
In 1978, Wilf conjectured that [1] for any numerical semigroup S, we have

$$
c(S) \leq e(S) n(S)
$$

Previous Generalization

Let S be a complement finite submonoid of \mathbb{N}_{0}^{d} (a.k.a generalized numerical semigroup). Let \leq be a partial order on \mathbb{N}_{0}^{d} such that for
$x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{N}_{0}^{d}, x \leq y$ if and only if $x_{i} \leq y_{i}$ for all $i=1, \ldots$, r. Let
$H(S)=\mathbb{N}_{o}^{d} \backslash S$. We define

- The conductor of S, denoted by $c(S)$ is the cardinality of the set

$$
\left\{x \in \mathbb{N}_{0}^{d}: x \leq h \text { for some } h \in H(S)\right\}
$$

- Let $\mathrm{n}(\mathrm{S})$ denote the cardinlity of the set

$$
\{x \in S: x \leq h \text { for some } h \in H(S)\}
$$

- Let $\mathrm{e}(\mathrm{S})$ denote the cardinality of the minimal set of generators of S.
Generalized Wilf Conjecture [2] states that

$$
d \mathrm{C}(S) \leq \mathrm{e}(S) \mathrm{n}(S)
$$

Notations

Let G be a unipotent complex linear algebraic group and let $M=G_{\mathbb{N}}$. Let $S \subseteq M$ be complement finite submonoid. We define

- The generating number of S is defined as
$\mathbf{r}_{M}(S)=\min \left\{k \in \mathbb{N}: U\left(n, \mathbb{N}_{O}\right)_{r_{M}(s)} \subseteq S\right\}$.
- $\mathrm{d}_{\mathrm{M}}:=\operatorname{dim} \mathrm{G}$.
- $c_{M}(S):=r(S)^{d_{M}}$. (Conductor of S.)
- $\mathbf{n}_{M}(S):=\left|S \backslash U(n, \mathbb{N})_{r_{M}(S)}\right|+1$.
$\bullet e(S):=\min \left\{|\mathscr{G}|: \mathscr{G}\right.$ generates $\left.S \backslash\left\{1_{n}\right\}\right\}$.
$\bullet g(S):=|M \backslash S|$. (Genus of S relative to M.)

Important families

Let $G=U(n, \mathbb{C})$ be the group unipotent upper triangular $n \times n$ matrices with entries in \mathbb{C} Define $M \subseteq G_{\mathbb{N}}$ as

$$
\mathbf{P}\left(n, \mathbb{N}_{0}\right):=\left\{\left(\begin{array}{ccccc}
1 & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & 1 & \ddots & \cdots & \vdots \\
\dot{O} & 0 & 0 & \cdots & \dot{1}
\end{array}\right): a_{i} \in \mathbb{N}_{0}\right\}
$$

The previous generalization is a special case of the above M. Define
$P\left(n, \mathbb{N}_{0}\right)_{k}=\left\{\left(x_{i j}\right): k \leq \max _{1 \leq i<j \leq n}\left\{x_{i j}\right\}\right\}$.
If $S \subseteq M$ be a complement finite submonoid then $\mathrm{P}\left(\mathrm{n}, \mathbb{N}_{0}\right)_{k} \subseteq S$ for some large k.

Unipotent Wilf Conjecture!!!

Let G be an unipotent algebraic group. If S be a complement finite submonoid of the arithmetic submonoid $M=G_{\mathbb{N}}$, then we have

$$
\mathbf{d}_{M} c_{M}(S) \leq e(S) n_{M}(S) .
$$

Thick families in $\mathrm{P}\left(n, \mathbb{N}_{0}\right)$

Let $S \subseteq M$ be complement finite submonoid. Let

$$
S_{j}=S \cap\left(\{0\} \times \cdots \times \mathbb{N}_{0} \times \cdots \times\{0\}\right)
$$

Define n_{j}, c_{j} and g_{j} of S_{j} accordingly. If $\sum_{j=1}^{n-1} g_{j}=g_{M}(S)$ then S is called thick submonoid of M. For example

[^0]
Thin families in $\mathrm{P}\left(\mathrm{n}, \mathbb{N}_{\mathrm{o}}\right)$

If $\prod_{j=1}^{n-1} n_{j}=n_{M}(S)$ then S is called thin submonoid of M.
Define $S=\left\{1_{2},(2,1),(1,3),(3,2), P_{5}\right\} \subseteq M$

We have $\mathbf{e}(S)=23, \mathbf{n}_{M}(S)=6$ and $\mathbf{c}_{M}(S)=50$.
If S is thin and $\prod_{j=1}^{n-1} c_{j}=k^{n-1}$ then UWC holds.

> Connection with Algebraic Geometry Let $X=\left\{[x ; y ; z] \in \mathbb{P}^{2}: x^{3}-y^{2} * z=0\right\}$ be a smooth projective variety of genus 1. Putting $z=1$, we get the affine veriety $Y=V\left(x^{3}-y^{2}\right)$. Let $P=(1,1), Q=(1,-1) \in Y$. For any $f=\frac{g}{h} \in k(X),(f)_{\infty}=\operatorname{ord}_{p}(h)$, where
> $\operatorname{ord}_{P}(h):=\max \left\{k: h \in \mathfrak{m}_{p^{\prime}}^{k} h \notin \mathfrak{m}_{P}^{k+1}\right\}$

For the point P and Q, let $\mathfrak{m}_{P}=(x-y)$ and $\mathfrak{m}_{Q}=(x+y)$ be the maximal ideal of the localization at P and Q respectively.
As $\left(\frac{x+y}{(x-y)(x+y)}\right)_{\infty}=\left(\frac{x+y}{x^{2}+x^{3}}\right)_{\infty}=$, so there are no positive integer n for which $(f)_{\infty} \neq n$. With
Macaulay2, one can see that genus of the curve is 0 .

References

[1] Herbert S Wilf.
A circle-of-lights algorithm for the "money-changing problem".
The American Mathematical Monthly, 85(7):562-565, 1978.
[2] Carmelo Cisto, Michael DiPasquale, Gioia Failla, Zachary Flores, Chris Peterson, and Rosanna Utano A generalization of Wilf's Conjecture for generalized numerical semigroups.
In Semigroup Forum, volume 101, pages 303-325.
Springer, 2020.
[3] Seon Jeong Kim.
On the index of the Weierstrass semigroup of a pair of points on a curve.
Archiv der Mathematik, 62(1):73-82, 1994
4] Mahir Bilen Can and Naufil Sakran. On Generalized Wilf Conjecture.
Submitted, 2022.

Contact Information

- Web: www.naufilsakran.com
- Email: nsakran@tulane.edu

[^0]: UWC holds for thick family.

