escarte's Law of signs and Budan-Fourier theorem

Sturm's Theorem

Real Root Counting

Naufil Sakran

Tulane University

1th February, 2022

Tulane University

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Naufil Sakran

Real Root Counting

1 / 20

Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References

1 Introduction

2 Descarte's Law of signs and Budan-Fourier theorem

3 Sturm's Theorem

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Naufil Sakran Real Root Counting

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
•00000	000000	0000	0

1 Introduction

2 Descarte's Law of signs and Budan-Fourier theorem

3 Sturm's Theorem

・ 日 ・ ・ 目 ・ ・ 目 ・ ・ 日 ・ う へ の

auf	il Sak	ran
eal	Root	Counting

Introduction 0●0000	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem 0000	References O
History			

Determining the roots of polynomials, or "solving algebraic equations", is among the oldest problems in Mathematics. However, the elegant and practical notation we use today only developed beginning in the 15th century. Before that, equations were written out in words. Our current formal definition of polynomial in one variable is:

Definition

Let R be a ring (a well defined "good" Mathematical structure). We define the set of polynomials R[x] to be

$$R[x] \coloneqq \{\sum_{i=0}^{n} a_i x^i : a_i \in R, \forall i \text{ and } n \in \mathbb{N}\}$$

・ロト・西ト・山下・山下・ 山下・ ひゃぐ

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000	000000	0000	0

Given any $f(x) \in R[x]$, what can you say about the existence and quantity of solutions to f(x) = 0?

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000		0000	O

Given any $f(x) \in R[x]$, what can you say about the existence and quantity of solutions to f(x) = 0?

The problem is very unclear and vague. To even start, we need to ask, solution coming from where?

Nauf	il Sak	ran	
Real	Root	Counting	

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
00000	000000	0000	O

Given any $f(x) \in R[x]$, what can you say about the existence and quantity of solutions to f(x) = 0?

The problem is very unclear and vague. To even start, we need to ask, solution coming from where?

Problem (Restated)

Given any $f(x) \in R[x]$, what can you say about the existence and quantity of solution to f(x) = 0 where $x \in A$ where A is a Mathematical structure "friendly" or "compatible" with R?

イロト 不得下 イヨト イヨト 二日

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000		0000	0

Naufil Sakran Real Root Counting

Given any $f(x) \in R[x]$, what can you say about the existence and quantity of solutions to f(x) = 0?

The problem is very unclear and vague. To even start, we need to ask, solution coming from where?

Problem (Restated)

Given any $f(x) \in R[x]$, what can you say about the existence and quantity of solution to f(x) = 0 where $x \in A$ where A is a Mathematical structure "friendly" or "compatible" with R?

The most general place where x could possibly come from is from all rings containing R.

Tulane University
5 / 20

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000		0000	0

There can be billion of rings containing R. Should we have to go indefinitely in order to answer the previous question?

Naufil Sakran Real Root Counting

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000●00	000000	0000	0

There can be billion of rings containing R. Should we have to go indefinitely in order to answer the previous question?

STILL VERY HARD TO ANSWER IN GENERAL!!!

Naufil Sakran Real Root Counting ・ロ・・日・・日・・日・ つくぐ

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000●00	000000	0000	0

There can be billion of rings containing R. Should we have to go indefinitely in order to answer the previous question?

STILL VERY HARD TO ANSWER IN GENERAL!!! If we impose some additional structure on R, we might completely answer some of the above problems.

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000			
Real closed fields			

We will let R be a real closed field and discuss our problem in this case.

Definition (Real closed field)

R is said to be **real closed field** if *R* is a totally ordered field and $R[i] = \frac{R[x]}{x^2+1}$ is algebraically closed. [2]

Examples

- \mathbb{R} (Of course)
- Q (Real field but not real closed field)
- \mathbb{R}_{alg} (Real closure of \mathbb{Q})
- Puiseux series. (Building blocks are of the form $\sum_{k=k_0}^{\infty} c_k X^{k/n}$ where $c_k \in F$ and $k_0, n \neq 0 \in \mathbb{Z}$)

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
00000		0000	O
Objective			

Let R be a real closed field. Let $f(x) \in R[x]$. So, f has the form

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \qquad , a_n \neq 0$$

Our goal is too see whether the coefficients a_i has anything to do with the roots of f or not.

8 / 20

Naufil Sakran

Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
•00000		

1 Introduction

2 Descarte's Law of signs and Budan-Fourier theorem

3 Sturm's Theorem

・ロト・日本・日本・日本・日本・日本

Nauf	il Sak	ran	
Real	Root	Counting	

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000	○●○○○○	0000	0

Definition

Let $a = (a_1, a_2, ..., a_n)$ be a sequence in $R \setminus \{0\}$. We define number of sign variations Var(a) in a to be

$$\operatorname{Var}(a_0,\ldots,a_p) = \begin{cases} \operatorname{Var}(a_1,\ldots,a_p) + 1 & \text{if } a_0a_1 < 0 \\ \operatorname{Var}(a_1,\ldots,a_p) & \text{if } a_0a_1 > 1 \end{cases}$$

If we have sequence containing 0, take the new sequence by removing 0. Also define $\mathrm{Var}(\emptyset)=0.$

Example

$$Var(1, -1, 2, 0, 0, 3, 4, -5, -2, 0, 3) = Var(1, -1, 2, 3, 4, -5, -2, 3) = 4$$

Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
00000		
		Ŭ

Now for any
$$f = \sum_{i=0}^{n} a_i x^i \in R[x]$$
,

$$\operatorname{Var}(f) = \operatorname{Var}(a_0, a_1, \ldots, a_n)$$

Definition

Let Pos(f) denote the **number of positive solutions** of f.

Naufil Sakran Real Root Counting ・ロト・白マ・山下・山下・ 山下・ ひゃう

	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
	000000		
Descarte's Law o	of Signs		

Theorem

Let R be a real field and $f \in R[x]$ then

- $I \quad Var(f) \geq Pos(f).$
- 2 Var(f) Pos(f) is even.

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000	0000●0	0000	O
General version			

Definition

Let $f = f_0, f_1, \ldots, f_d$ be a sequence of polynomials and let $a \in R \cup \{\pm \infty\}$. The **number of sign variations** of f at a, denoted by Var(f; a), is

$$\operatorname{Var}(f; a) = \operatorname{Var}(f_0(a), f_1(a), \ldots, f_d(a))$$

For any interval $(a, b] \subset R$,

 $\operatorname{Var}(f; a, b) = \operatorname{Var}(f; b) - \operatorname{Var}(f; a)$

3

Tulane University

イロト イヨト イヨト

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000	00000●		0
Budan-Fourie	er Theorem		

Theorem (Budan-Fourier Theorem)

Let R be a real field and $f \in R[x]$ of degree n. Let $Der(f) = (f, f', ..., f^{(n)})$ be the sequence of derivatives of f. Given any $a, b \in R \cup \{\pm \infty\}$

- 1 $Var(Der(f); a, b) \ge num(f; (a, b]).$
- 2 Var(Der(f); a, b) num(f; (a, b]) is even.

where num(f; (a, b]) denote the number of roots of f in (a, b]. [1]

э.

イロト イポト イヨト イヨト

Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
	•000	

1 Introduction

2 Descarte's Law of signs and Budan-Fourier theorem

3 Sturm's Theorem

・ロ・・母・・中・・日 うくの

Naufil Sakran Real Root Counting

15 / 20

Definition (Signed Remainder sequence)

Let R be a real field. Let $f, g \in R[x]$, not both 0. The signed remainder sequence of f and g is defined as

$$\operatorname{sRem}(f,g) = (\operatorname{sRem}_0(f,g), \operatorname{sRem}_1(f,g), \dots, \operatorname{sRem}_k(f,g))$$

where

$$\operatorname{sRem}_0(f,g) = f, \quad \operatorname{sRem}_1(f,g) = g,$$

and for $i \ge 1$, if $\operatorname{Rem}(\operatorname{sRem}_{i-1}(f,g), \operatorname{sRem}_i(f,g)) \neq 0$,

 $\operatorname{sRem}_{i+1}(f,g) = -\operatorname{Rem}(\operatorname{sRem}(f,g)_{i-1},\operatorname{sRem}_i(f,g))$

where $\operatorname{Rem}(P, Q)$ denote the remainder of P divided by Q for any $P, Q \in R[x]$, not both zero. (k is such that $\operatorname{sRem}_i(f, g) = 0$ for all i > k).

Tulane University

Introduction	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
000000		00●0	O

Theorem (Sturm's Theorem)

Let R be a real field and $f \in R[x]$. Given $a, b \in R \cup \{\pm \infty\}$ that are not roots of f,

$$Var(sRem(f, f'); a, b) = num(f; (a, b))$$

where num(f; (a, b]) denote the number of roots of f in (a, b). [1]

ъ

Tulane University

イロト イヨト イヨト イヨト

Introduction 000000	Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem 000●	
Example			

Let
$$f = x^4 - 5x^2 + 4 \in \mathbb{R}[x]$$
.

$$sRem_{0}(f, f') = f = x^{4} - 5x^{2} + 4 \qquad sRem_{3}(f, f') = \frac{18}{5}x$$
$$sRem_{1}(f, f') = f' = 4x^{3} - 10x \qquad sRem_{4}(f, f') = 4$$
$$sRem_{2}(f, f') = \frac{5}{2}x^{2} - 4$$

$$Var(sRem(f, f'); \infty) = Var(+, +, +, +, +) = 0$$
$$Var(sRem(f, f'); -\infty) = Var(+, -, +, -, +) = 4$$
So, Var(sRem(f, f'); $\infty, -\infty$) = num(f; $(-\infty, \infty)$) = 4.

Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References

- [1] Saugata Basu, Richard Pollack, and Marie Françoise. Roy. *Algorithms in Real algebraic geometry*. Vol. 10. Springer Science, 2016.
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. *Real algebraic geometry*. Vol. 36. Springer Science & Business Media, 2013.

Tulane University

A (1) > A (2) > A

Descarte's Law of signs and Budan-Fourier theorem	Sturm's Theorem	References
		•

Thank You

For questions, you can email me at nsakran@tulane.edu

・ロト・日本・日本・日本・日本・日本

Naufil Sakran Real Root Counting

20 / 20