# Math 1221: Recitation 10 ( T ) 

Naufil Sakran

(1) Solve the following.
(a) Suppose $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow 0$. Find the radius of convergence of the series

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{a_{n} x^{n}}{2^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{2^{n+1}} * \frac{2^{n}}{a_{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}} * \frac{x}{2}\right| \rightarrow 0 * \frac{|x|}{2}=0<1
\end{gathered}
$$

So for any value of $x$, the series converges which implies $R=\infty$.
(b) Suppose $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow c<1$ where $c \neq 0$. Find the radius of convergence of the series

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{a_{n} x^{n}}{2^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{2^{n+1}} * \frac{2^{n}}{a_{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}} * \frac{x}{2}\right| \rightarrow c * \frac{|x|}{2}=\frac{c|x|}{2}<1
\end{gathered}
$$

So $|x|<\frac{2}{c}$ implying that $R=\frac{2}{c}$.
(c) Suppose $\sqrt[n]{\left|a_{n}\right|} \rightarrow 1$. Find the radius of convergence of the series

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{a_{n}(x-2)^{n}}{9^{n}} \\
\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{a_{n}(x-2)^{n}}{9^{n}}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \frac{|x-2|}{9} \rightarrow \frac{|x-2|}{9}<1
\end{gathered}
$$

So, $\frac{|x-2|}{9}<1$ implies $|x-2|<9$ implying $R=9$.
(2) Solve the following questions. (Do any two of them).
(a) Use partial fractions to find the power series of the function. (Hint: $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ )

$$
\begin{gathered}
\frac{7}{(x-10)(x+1)} \\
\frac{7}{(x-10)(x+1)}=\frac{7}{11} * \frac{1}{x-10}-\frac{-7}{11} * \frac{1}{x+1}=\frac{7}{11 * 10} \sum_{n=0}^{\infty}\left(\frac{x}{10}\right)^{n}+\frac{7}{11} \sum_{n=0}^{\infty}(-x)^{n}
\end{gathered}
$$

(b) Differentiate the given series expansion of $f$ term-by-term to obtain the corresponding series expansion for the derivative of $f$

$$
\begin{gathered}
f(x)=\frac{1}{1+x^{8}} \\
f(x)=\frac{1}{1+x^{8}}=\sum_{n=0}^{\infty}(-1)^{n} x^{8 n} \\
f^{\prime}(x)=\sum_{n=0}^{\infty}(-1)^{n} 8 n x^{8 n-1}
\end{gathered}
$$

(c) Evaluate

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

as $\int_{0}^{1} f(t) d t$ where $f(x)=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}$ by identifying it as the value of a derivative or integral of geometric series.
Let $f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$. So,

$$
\begin{aligned}
\frac{1}{1+x^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
\int \frac{1}{1+x^{2}} & =\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
\tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} &
\end{aligned}
$$

So, $\tan ^{-1}(1)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(1)^{2 n+1}}{2 n+1}$ implies $\sum_{n=0}^{\infty} \frac{(-1)^{n}(1)^{2 n+1}}{2 n+1}=\frac{\pi}{4}$.
(3) (Bonus) Solve any two of them.
(a) Given $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. Use term-by-term differentiation or integration to find a power series for the function centered at the given point.

$$
\begin{gathered}
f(x)=\ln \left(1-x^{8}\right) \text { centered at } x=0 . \\
\frac{d}{d x} \ln \left(1-x^{8}\right)=\frac{-8 x^{7}}{1-x^{8}}
\end{gathered}
$$

So,

$$
\begin{aligned}
& \frac{-8 x^{7}}{1-x^{8}}=-8 x^{7} * \frac{1}{1-x^{8}} \\
& \frac{-8 x^{7}}{1-x^{8}}=-8 x^{7} \sum_{n=0}^{\infty} x^{8 n} \\
& \frac{-8 x^{7}}{1-x^{8}}=\sum_{n=0}^{\infty}-8 x^{8 n+7}
\end{aligned}
$$

Now integrating both sides

$$
\begin{gathered}
\int \frac{-8 x^{7}}{1-x^{8}} d x=\int \sum_{n=0}^{\infty}-8 x^{8 n+7} d x \\
\ln \left(1-x^{8}\right)=\sum_{n=0}^{\infty} \frac{-8 x^{8 n+8}}{8 n+8} .
\end{gathered}
$$

(b) Find the Taylor series at $a=\frac{\pi}{2}$ for

$$
\begin{gathered}
f(x)=10 \cos x \\
f\left(\frac{\pi}{2}\right)=10 \cos \frac{\pi}{2}=0 \\
f^{\prime}\left(\frac{\pi}{2}\right)=-10 \sin \frac{\pi}{2}=-10 \\
f^{\prime \prime}\left(\frac{\pi}{2}\right)=-10 \cos \frac{\pi}{2}=0 \\
f^{\prime \prime \prime}\left(\frac{\pi}{2}\right)=10 \sin \frac{\pi}{2}=10 \\
f^{(4)}\left(\frac{\pi}{2}\right)=10 \cos \frac{\pi}{2}=0
\end{gathered}
$$

So,

$$
\begin{gathered}
f(x)=f\left(\frac{\pi}{2}\right)+f^{\prime}\left(\frac{\pi}{2}\right)\left(x-\frac{\pi}{2}\right)+\frac{f^{\prime \prime}\left(\frac{\pi}{2}\right)}{2!}\left(x-\frac{\pi}{2}\right)^{2}+\frac{f^{\prime \prime \prime}\left(\frac{\pi}{2}\right)}{3!}\left(x-\frac{\pi}{2}\right)^{3}+\cdots \\
f(x)=0-10\left(x-\frac{\pi}{2}\right)+0+\frac{10}{3!}\left(x-\frac{\pi}{2}\right)^{3}-10 \frac{10}{5!}\left(x-\frac{\pi}{2}\right)^{5}+\cdots
\end{gathered}
$$

(c) Find the integral $\int_{0}^{1} \cos \left(x^{2}\right) d x$ in terms of series. As

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

We have

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!}
$$

So,

$$
\int \cos x^{2} d x=\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(2 n+1)!(4 n+3)}+C
$$

