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(1) Solve the following.

(a) Suppose
∣∣∣an+1
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∣∣∣ → 0. Find the radius of convergence of the series
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So for any value of x, the series converges which implies R = ∞.

(b) Suppose
∣∣∣an+1

an

∣∣∣ → c < 1 where c ̸= 0. Find the radius of convergence of the series
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So |x| < 2
c implying that R = 2

c .

(c) Suppose n
√

|an| → 1. Find the radius of convergence of the series
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So, |x−2|
9 < 1 implies |x− 2| < 9 implying R = 9.

(2) Solve the following questions. (Do any two of them).

(a) Use partial fractions to find the power series of the function. (Hint: 1
1−x =

∑∞
n=0 x

n)
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(b) Differentiate the given series expansion of f term-by-term to obtain the corresponding series
expansion for the derivative of f

f(x) =
1

1 + x8
.

f(x) =
1

1 + x8
=
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∞∑
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(c) Evaluate
∞∑
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∑∞
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1+x2 by identifying it as the value of a derivative
or integral of geometric series.
Let f(x) = 1

1+x2 =
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∑∞

n=0
(−1)n(1)2n+1

2n+1 implies
∑∞

n=0
(−1)n(1)2n+1

2n+1 = π
4 .

(3) (Bonus) Solve any two of them.

(a) Given 1
1−x =

∑∞
n=0 x

n. Use term-by-term differentiation or integration to find a power series
for the function centered at the given point.

f(x) = ln (1− x8) centered at x = 0.

d
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So,
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Now integrating both sides ∫
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.
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(b) Find the Taylor series at a = π
2 for

f(x) = 10 cosx
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f(x) = 0− 10(x− π

2
) + 0 +

10

3!
(x− π

2
)3 − 10

10

5!
(x− π

2
)5 + · · ·

(c) Find the integral
∫ 1

0
cos(x2)dx in terms of series. As
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∞∑
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