Math 1221: Recitation 11 (R)

Naufil Sakran

(1) Solve the following. (Do any two of them)
(a) Find the equation in the $x y$-plane whose graph includes $x=8 \sin t$ and $y=8 \cos t$.
(b) Find the equation in the $x y$-plane whose graph includes $x=t^{7}$ and $y=7 \ln t$. Also, state the domain of the rectangular form.
(c) Find the equation in the xy-plane whose graph includes $x=\ln 8 t$ and $y=t^{2}$.
(2) Solve the following questions. (Do any two of them).
(a) Determine the slope of the tangent line, then find the equation of the tangent line at the given value of the parameter.

$$
x=2 t, \quad y=10 t^{3}, \quad t=-1
$$

(b) Find $\frac{d^{2} y}{d x^{2}}$ of the following

$$
x=\frac{1}{2} t^{2}, \quad y=\frac{1}{3} t^{3}, \quad t=2 .
$$

(c) Determine the slope of the tangent line, then find the equation of the tangent line at the given value of the parameter.

$$
x=\cos t, \quad y=10 \sin t, \quad t=\frac{\pi}{2}
$$

(3) (Bonus) Solve any two of them.
(a) Find the area of the regions bounded by the parametric curves and the indicated values of the parameter.

$$
x=2 \cot \theta, \quad y=2 \sin \theta^{2}, \quad 0 \leq \theta \leq \pi
$$

(b) Find the arc length of the curve

$$
x=3 t+2, \quad y=4 t-4
$$

where $0 \leq t \leq 2$.
(c) Find all points on the curve

$$
x=t+2, \quad y=t^{3}-3 t
$$

at which there are vertical and horizontal tangents.

