Math 1221: Recitation 7 (T)

Naufil Sakran

(1) Solve the following.
(a) Find the a_{5} of the following sequence.

$$
a_{0}=2, a_{2}=1, \quad a_{n}=\frac{1}{a_{n-1}}+a_{n-2}
$$

(b) Find the following limit

$$
\lim _{n \rightarrow \infty} \frac{n^{3}}{5^{n}}
$$

(c) Find the following limit using Squeeze theorem

$$
\lim _{n \rightarrow \infty} \frac{5 n!}{n^{n}}
$$

(2) Solve the following questions. (Do any two of them).
(a) Determine whether the series converges or diverges

$$
\sum_{n=0}^{\infty} \frac{99^{n}}{100^{n+1}}
$$

(b) Show that the following series diverges. Hint: It is a telescoping sum.

$$
\sum_{n=1}^{\infty}\left(3^{\frac{1}{n}}-3^{\frac{1}{n+1}}\right)
$$

(c) Use the integral test to evaluate whether the sum converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{7 n}{1+n^{4}}
$$

(3) (Bonus) Solve any one of them.
(a) Find the limit of

$$
a_{n}=\frac{\sqrt{5 n^{4}+3 n^{2}+2}}{6 n^{2}+2}
$$

(b) Use estimate $R_{N} \leq \int_{N}^{\infty} f(t) d t$ to find a bound where $R_{N}=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{N} a_{n}$ where

$$
a_{n}=\sum_{n=1}^{1000} \frac{7}{n^{2}}
$$

(c) Determine whether the series converges or diverges

$$
\sum_{n=2}^{\infty} \frac{8}{n \sqrt{\ln n}}
$$

