# Math 1221: Recitation 8 (R) 

Naufil Sakran

(1) Solve the following.
(a) Does the following series converge or diverge? Briefly explain your answer.

$$
\sum_{n=1}^{\infty} 3^{-\frac{10}{n}}, \quad \text { and } \quad \sum_{n=1}^{\infty} 3^{\frac{10}{n}}, \quad \text { and } \quad \sum_{n=1}^{\infty} 3^{-\frac{n}{10}}
$$

(b) Comment on the convergence or the divergence of

$$
\sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{2}
$$

(c) Does the following converge or diverge

$$
\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}
$$

(2) Solve the following questions. (Do any one of them).
(a) Use the comparison test to determine whether the following series converge. Hint: Compare with $\frac{1}{n}, \frac{1}{n^{2}}$ and $\frac{1}{n^{\frac{3}{2}}}$ and see which works.

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}
$$

(b) Find $\lim \frac{1}{n^{\frac{1}{n}}}$. Use this fact to determine whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}
$$

(3) (Bonus) Solve any two of them.
(a) Does the following series converge or diverge?

$$
\sum_{n=1}^{\infty} \frac{1}{4^{n}-3^{n}}
$$

(b) Determine whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{n+\ln n}{n^{2}+8 n-2}
$$

(c) State whether the series converges absolutely, conditionally, or not at all.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}
$$

