Math 1221: Recitation 9 (T)

Naufil Sakran

(1) Solve the following. (Do any two of them)
(a) Comment on the convergence of the following series. Also, find R_{10} for the series and simplify it. (Recall: $R_{n}=b_{n+1}$.)

$$
\sum_{n=1}^{\infty}(-1)^{n+1}(\ln (n+1)-\ln (n))
$$

(b) Comment on the convergence or divergence of the series using root test.

$$
\sum_{n=0}^{\infty}\left(\frac{n}{10(n+1)+3}\right)^{n}
$$

(c) Comment on the convergence or divergence of the series using root test. (This is our ordinary $\pi \approx 3.142$)

$$
\sum_{n=0}^{\infty} \frac{n^{\pi}}{\pi^{n}}
$$

(2) Solve the following questions. (Do any two of them).
(a) Suppose that $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow 1$. Find the radius of convergence of the following series

$$
\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{5^{n}}
$$

(b) Use the equation $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots$, to expand the following function

$$
f(x)=\frac{1}{1+2 x} .
$$

(c) Apply the ratio test to the series and determine if the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{n!}{16 n^{3}}
$$

(3) (Bonus) Solve any two of them.
(a) Use the ratio test to determine whether the series converge or diverge.

$$
\sum_{n=0}^{\infty} \frac{n^{15}}{4^{n}}
$$

(b) Find the interval of convergence of

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n^{9}+7}
$$

(c) Find the radius of convergence of

$$
\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}
$$

