Classifying Irreducible Unipotent Numerical Monoids into Symmetric and Pseudo Symmetric Monoids

Naufil Sakran Joint work with Dr. Mahir Bilen Can

Department of Mathematics Tulane University

March 25, 2024

March 25, 2024

1/37

- Numerical Semigroups
- **2** Unipotent Numerical Monoids
- **3** Symmetric and Pseudo-Symmetric UNM
- **4** Main Results

Numerical Semigroups

O Unipotent Numerical Monoids

Symmetric and Pseudo-Symmetric UNM

Main Results

We assume $\mathbb{N}=\{0,1,2,3,\rightarrow\}$ throughout the talk.

Definition

A subset $\mathcal{S} \subseteq \mathbb{N}$ is a numerical semigroup if

- $0 \in S$.
- If $a, b \in S$ then $a + b \in S$.
- Complement of S in \mathbb{N} is finite.

pause

Example

Let
$$S = \{0, 3, 5, 6, 8, 9, 10, \rightarrow\} = \langle 3, 5 \rangle$$
.

< 回 > < 回 > < 回 >

Invariants

Let \mathcal{S} be a numerical semigroup.

- Multiplicity m(S) is the smallest non-zero number in S.
- Gap set G(S) is the set of elements of the complement of S in $\mathbb{Z}_{\geq 0}$. Genus g(S) is the cardinality of G(S). pause
- Frobenius element F(S) is the largest number in the gap set N(S).

• Conductor
$$c(S) = F(S) + 1$$
.

- The Pseudo-Frobenius set is defined as $PF(S) := \{x \in G(S) : x + S \subseteq S\}.$ pause
- Sporadic elements $\mathbb{N}(S) := \{x \in S : x < \mathbb{F}(S)\}$. We denote $n(S) = |\mathbb{N}(S)|$.
- Minimal generating set of S is denoted by e(S).

5/37

イロト イボト イヨト イヨト

Example

Let $S = \{0, 3, 6, 8, 9, 10, \rightarrow\} = \langle 3, 8, 10 \rangle$.

•
$$m(\mathcal{S}) = 3$$

•
$$G(S) = \{1, 2, 4, 5, 7\}$$
 and $g(S) = 5$ pause

•
$$F(\mathcal{S}) = 7$$

•
$$c(\mathcal{S}) = 8$$

•
$$PF(S) = \{5,7\}$$

pause

•
$$N(S) = \{0, 3, 6\}$$
 and $n(S) = 3$.

•
$$e(\mathcal{S}) = 3$$

E

<ロト <回ト < 回ト < 回ト < 回ト < </p>

A numerical semigroup S is said to be irreducible if it cannot be expressed as the intersection of two distinct numerical semigroups properly containing S.

pause

Example

The numerical semigroup $\mathcal{S} = \langle 3, 7, 11 \rangle$ is irreducible.

pause

< □ > < 同 > < 回

Let S be a numerical semigroup. Let g(S) denote the genus of S.

- We say that S is symmetric if $g(S) = \frac{1+F(S)}{2}$.
- We say that S is pseudo-symmetric if $g(S) = \frac{2+F(S)}{2}$.

pause

Example

$$\mathcal{S} = \langle \mathbf{3}, \mathbf{5} \rangle = \{\mathbf{0}, \mathbf{3}, \mathbf{5}, \mathbf{6}, \mathbf{8}, \mathbf{9}, \rightarrow \}.$$

pause We have $G(S) = \{1, 2, 4, 7\}$ so, g(S) = 4. Note F(S) = 7. pause Thus, S is Symmetric.

pause

Example

$$S = \langle 3, 7, 11 \rangle = \{0, 3, 6, 7, 9, 10, 11, \rightarrow \}.$$

pause We have $G(S) = \{1, 2, 4, 5, 8\}$ so, g(S) = 5. Note F(S) = 8.

Theorem

Let S be an irreducible numerical semigroup. Then S is either symmetric or pseudo-symmetric. Moreover, every symmetric or pseudo-symmetric semigroup are irreducible.

Let S be a numerical semigroup. Let K be algebraically closed and define K[S] = ⊕_{s∈S}Kt^s. Consider the ring K[[S]]. [Kun70] showed that K[[S]] is a Gorenstein ring if and only if S is symmetric. pause *Remark*: A Noetherian ring R is Gorenstein if R has finite

injective dimension as an *R*-module.

Numerical Semigroups

2 Unipotent Numerical Monoids

③ Symmetric and Pseudo-Symmetric UNM

Main Results

Unipotent Numerical Semigroups

Let

$$\mathbf{U}(n,\mathbb{N}) := \left\{ \begin{pmatrix} 1 & x_{12} & x_{13} & \cdots & x_{1n} \\ 0 & 1 & x_{23} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} : \{x_{ij}\}_{1 < i < j < n} \in \mathbb{N} \right\}$$

pause We fix a finitely generated monoid $\mathbf{G} \subseteq \mathbf{U}(n, \mathbb{N})$. pause A subset $S \subseteq \mathbf{G}$ is a *unipotent numerical semigroup* if

- $\mathbf{1}_n \in \mathcal{S}$.
- If $A, B \in S$ then $AB \in S$.
- Complement of \mathcal{S} in **G** is finite.

Let us fix $\mathbf{G} = \mathbf{P}(n, \mathbb{N})$ where

$$\mathbf{P}(n,\mathbb{N}) := \left\{ \begin{pmatrix} 1 & x_{12} & x_{13} & \cdots & x_{1n} \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} : \{x_{1j}\}_{1 < j \le n} \in \mathbb{N} \right\} \quad (\cong \mathbb{N}^{n-1})$$

< ∃⇒

< □ > < 凸

E

Example (k-th Fundamental monoid)

Let

$$\mathbf{P}_k(n) := \{(x_{1j})_{1 < j \le n} \in \mathbf{P}(n) : x_{1j} \ge k \text{ for some } 1 > j \le n\} \subseteq \mathbf{P}(n).$$

pause

Example

Let $\mathcal{S} \subseteq \mathbf{P}(3)$ and consider \mathcal{S} plotted as

Figure: $S = \langle (1,1), (2,1), (1,2), (4,1), (1,4), \mathbf{P}_5 \rangle$

Naufil Sakran (Tulane)

률 ▶ < 토 ▶ < 토 ▶ · 토 · ∽ < < March 25, 2024 15 / 37

- **1** Let $\mathbf{G}_{\mathbf{U}}$ denote $\mathbf{U}(n, \mathbb{N})$ and $\mathbf{G}_{\mathbf{P}}$ denote $\mathbf{P}(n, \mathbb{N})$. Collectively we denote them by \mathbf{G} .
- We let G_k denote the corresponding k-th Fundamental monoid in G_U or G_P.

pause

- **3** An asterisk on a set denote the set minus the identity element e.g. $\mathbf{G}^* = \mathbf{G} \setminus \mathbf{1}_n$ where $\mathbf{1}_n$ denote the $n \times n$ identity matrix.
- **4** We will denote an arbitrary Unipotent Numerical Monoid in **G** by \mathcal{S} .

Invariants

Let \mathcal{S} be a unipotent numerical monoid in \mathbf{G} .

- Gap set G(S) is the set of elements of the complement of S in **G**. Genus g(S) = |G(S)|.
- Generating number $r(S) = \min\{k \in \mathbb{N} : \mathbf{G}_k \subseteq S\}$. pause
- Sporadic elements $\mathbb{N}(S) := S \setminus \mathbf{G}_{r(S)}$ and $n(S) = |\mathbb{N}(S)|$.
- Minimal generating set of S is denoted by e(S).

Example

Let $\mathcal{S} = \langle (1,1), (1,2), (1,4), (2,1), (4,1) \rangle \sqcup G_5$ in $G = G_P = P(3, \mathbb{N})$.

					•	-			
(0,9)									
(0,8)									
(0,7)									
(0,6)									
(0,5)	(1,5)								
	(1,4)	(2,4)	(3,4)	(4,4)					
		(2,3)	(3,3)	(4,3)					
	(1, 2)	(2,2)	(3,2)	(4,2)					
	(1, 1)	(2,1)		(4,1)	(5, 1)				
(0,0)					(5,0)	(6,0)	(7,0)	(8,0)	(9,0)

 $r(\mathcal{S}) = 5, \quad g(\mathcal{S}) = 10, \quad e(\mathcal{S}) = 17, \quad n(\mathcal{S}) = 15$

Naufil Sakran (Tulane)

< (17) > <

Let S be a unipotent numerical monoid in **G**. The different types of *Frobenius sets* in S are defined as follows:

• The left Frobenius set of $\mathcal S$ is defined as

$$F_I(\mathcal{S}) := \{ A \in \mathbf{G} : A \notin \mathcal{S} \text{ and } A\mathbf{G}^* \subseteq \mathcal{S} \}.$$

pause

• The right Frobenius set of S is defined as

 $\mathbb{F}_r(\mathcal{S}) := \{ A \in \mathbf{G} : A \notin \mathcal{S} \text{ and } \mathbf{G}^* A \subseteq \mathcal{S} \}.$

• The two-sided Frobenius set of S is defined as

 $F_t(\mathcal{S}) := \{ A \in \mathbf{G} : A \notin \mathcal{S} \text{ and } \{ A \mathbf{G}^*, \mathbf{G}^* A \} \subseteq \mathcal{S} \}.$

Remark: If $\mathbf{G} = \mathbf{G}_{\mathbf{P}}$, then all the three types of Frobenius sets coincides.

Naufil Sakran (Tulane)

(4 回 ト 4 ヨ ト 4 ヨ ト

Let S be a unipotent numerical monoid in **G**. The different types of *Pseudo-Frobenius sets* in S are defined as follows:

• The left Pseudo-Frobenius set of S is defined as

$$\operatorname{PF}_{I}(\mathcal{S}) := \{A \in \mathbf{G} : A \notin \mathcal{S} \text{ and } A\mathcal{S}^{*} \subseteq \mathcal{S}\}.$$

pause

• The right Pseudo-Frobenius set of S is defined as

 $\operatorname{PF}_r(\mathcal{S}) := \{A \in \mathbf{G} : A \notin \mathcal{S} \text{ and } \mathcal{S}^*A \subseteq \mathcal{S}\}.$

• The two-sided Pseudo-Frobenius set of $\mathcal S$ is defined as

 $\operatorname{PF}_t(\mathcal{S}) := \{A \in \mathbf{G} : A \notin \mathcal{S} \text{ and } \{A\mathcal{S}^*, \mathcal{S}^*A\} \subseteq \mathcal{S}\}.$

Remark: If $\mathbf{G} = \mathbf{G}_{\mathbf{P}}$, then all the three types of Pseudo-Frobenius sets coincides.

Naufil Sakran (Tulane)

March 25, 2024 20 / 37

(4 回 ト 4 ヨ ト 4 ヨ ト

A unipotent numerical monoid S in **G** is said to be irreducible if it cannot be expressed as the intersection of two distinct unipotent numerical monoids properly containing S.

Example (Not Irreducible)

Let $\mathcal{S} = \langle (1,1), (1,2), (1,4), (2,1), (4,1) \rangle \sqcup G_5$ in $G = G_P = P(3, \mathbb{N})$.

(0,4)	(1,4)	(2,4)	(3,4)	(4,4)		
(0,3)	(1, 3)	(2, 3)	(3,3)	(4,3)		
 , , ,	(1, 2)	(2, 2)	(3,2)	(4,2)		
	(1, 1)	(2,1)	(3,1)	(4,1)		
(0,0)			(3,0)	(4,0)		

pause

 $\mathtt{F}(\mathcal{S}) = \{(0,4), (1,3), (3,1), (4,0)\}, \quad \mathtt{PF}(\mathcal{S}) = \mathtt{F}(\mathcal{S}) \cup \{(0,3), (3,0)\}$

Naufil Sakran (Tulane)

イロト イヨト イヨト イヨト

Example (Irreducible)

Let $\mathcal{S} = \langle (1,1), (2,0), (2,2), (3,0), (3,1) \rangle \sqcup G_4$ in $G = G_P = P(3, \mathbb{N})$.

 $F(S) = \{(3,2)\}, PF(S) = F(S)$

Naufil Sakran (Tulane)

E

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

◆□▶ ◆□▶ ◆□▶ ◆□▶

Numerical Semigroups

O Unipotent Numerical Monoids

3 Symmetric and Pseudo-Symmetric UNM

4 Main Results

Naufil Sakran (Tulane)

March 25, 2024 25 / 37

Let \mathcal{S} be an irreducible unipotent numerical monoid in \mathbf{G} .

- Then S is called symmetric if for every A ∈ G\S, we have F_t(S) ∩ (AS ∩ SA) ≠ Ø.
 pause
- Then S is called *pseudo-symmetric* if for every $A \in \mathbf{G} \setminus S$, we have at least one of the following 2 cases:

March 25, 2024

26 / 37

1 We have
$$A^2 \in F_t(S)$$
.

2 We have
$$F_t(S) \cap (AS \cap SA) \neq \emptyset$$
.

Symmetric Example

Example

Let $\mathcal{S} = \langle (1,1), (2,0), (2,2), (3,0), (3,1) \rangle \sqcup G_4$ in $G = G_P = P(3, \mathbb{N})$.

Naufil Sakran (Tulane)

March 25, 2024 27 / 37

(4 何) トイヨト イヨト

Example

Э

▶ < ∃ ▶</p>

< 47 ▶

Numerical Semigroups

Olipotent Numerical Monoids

③ Symmetric and Pseudo-Symmetric UNM

4 Main Results

Observation

Let S be a unipotent numerical monoid in **G**. If S is irreducible then $|F_l(S)| = |F_r(S)| = |F_t(S)| = 1$

pause

Lemma (Can, S. 23)

Let S be a unipotent numerical monoid in **G**. If |F(S)| = 1 for any one type of Frobenius set, then the following statements are equivalent.

• S is irreducible.

pause

• S is maximal with respect to set inclusion in the set of unipotent numerical monoid S such that $F(S) \cap T = \emptyset$.

pause Furthermore, if $|F_I(S)| = |F_r(S)| = |F_t(S)| = 1$, then we can add the following equivalent statement to the above list.

• S is maximal with respect to set inclusion in the set of unipotent numerical monoid S such that F(S) = F(T).

Theorem (Can, S. 23)

Let S be a unipotent numerical monoid in **G**. If one of the following conditions holds true, then S is irreducible.

- If $|F_{I}(S)| = 1$ and for every $A \in \mathbf{G} \setminus S$, we have $F_{I}(S) \cap AS \neq \emptyset$.
- If $|F_r(S)| = 1$ and for every $A \in \mathbf{G} \setminus S$, we have $F_l(S) \cap SA \neq \emptyset$.

• If
$$|F_t(S)| = 1$$
 and for every $A \in \mathbf{G} \setminus S$, we have $F_l(S) \cap (AS \cap SA) \neq \emptyset$.

pause *Remark:* This shows that the condition of irreducibility in symmetricity can be dropped and be replaced by |F(S)| = 1.

Theorem (Can, S. 23)

Let S be a unipotent numerical monoid. If S is irreducible, then S is either symmetric or pseudo-symmetric.

Naufil Sakran (Tulane)

March 25, 2024 32 / 37

Note that for symmetric numerical semigroups, we had the definition to be $g(S) = \frac{1+F(S)}{2}$. We have an equivalent description for unipotent numerical monoid.

pause We introduce the partial the following partial order on **G**. Let $A, B \in \mathbf{G}$, then

$$A \leq_{\mathbf{G},t} B \iff \{BA^{-1}, A^{-1}B\} \subseteq \mathbf{G}.$$

pause For example, if $\mathbf{G} = \mathbf{G}_{\mathbf{P}} = \mathbf{P}(3, \mathbb{N})$ then

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq_{\mathbf{G},t} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ as } \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Proposition (Can, S. 23)

Let S be a unipotent numerical monoid in **G** such that $|F_t(S)| = 1$. Then we have

$$|n(\mathcal{S}, F, \preceq)| = g(\mathcal{S})$$

where

$$n(\mathcal{S}, F, \preceq) := \{B \in \mathcal{S} : \mathbf{1}_n \leq_{\mathbf{G}, t} B \leq_{\mathbf{G}, t} F\}$$

Э

→ < ∃ >

- Connection to commutative algebra.
- 2 Characterize irreducibility with respect to the set of divisors

$$\mathbf{D}(X) := \{A \in \mathcal{S} : A \leq_{\mathcal{S},t} X\}.$$

- Oerive connection to Weierstrass semigroup of multiple points on a curve X.
- Connection to algebraic coding theory. pause
- We look forward to generalizing it to linear algebraic groups. We know that G = R × U(n).

- [Kun70] Ernst Kunz. "The value-semigroup of a one-dimensional Gorenstein ring". In: Proceedings of the American Mathematical Society 25.4 (1970), pp. 748–751.
- [ADG20] Abdallah Assi, Marco D'Anna, and Pedro A García-Sánchez. Numerical semigroups and applications. Vol. 3. Springer Nature, 2020.
- [CSca] Mahir Bilen Can and Naufil Sakran. "On Generalized Wilf Conjectures". In: arXiv preprint arXiv:2306.05530 (2023 To appear in Portugaliae Mathematica).

THANK YOU!!!

Naufil Sakran (Tulane)

< ∃⇒

< <p>I > < <p>I

E