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Numerical Semigroups

We assume N = {0, 1, 2, 3,→} throughout the talk.

Definition

A subset S ⊆ N is a numerical semigroup if

• 0 ∈ S.
• If a, b ∈ S then a+ b ∈ S.
• Complement of S in N is finite.

pause

Example

Let S = {0, 3, 5, 6, 8, 9, 10,→} = ⟨3, 5⟩.
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Invariants

Let S be a numerical semigroup.

• Multiplicity m(S) is the smallest non-zero number in S.
• Gap set G(S) is the set of elements of the complement of S in Z≥0.
Genus g(S) is the cardinality of G(S).
pause

• Frobenius element F(S) is the largest number in the gap set N(S).
• Conductor c(S) = F(S) + 1.

• The Pseudo-Frobenius set is defined as
PF(S) := {x ∈ G(S) : x + S ⊆ S}.
pause

• Sporadic elements N(S) := {x ∈ S : x < F(S)}. We denote
n(S) = |N(S)|.

• Minimal generating set of S is denoted by e(S).
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Example

Let S = {0, 3, 6, 8, 9, 10,→} = ⟨3, 8, 10⟩.
• m(S) = 3.

• G(S) = {1, 2, 4, 5, 7} and g(S) = 5.
pause

• F(S) = 7.

• c(S) = 8.

• PF(S) = {5, 7}
pause

• N(S) = {0, 3, 6} and n(S) = 3.

• e(S) = 3
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Definition

A numerical semigroup S is said to be irreducible if it cannot be expressed
as the intersection of two distinct numerical semigroups properly
containing S.

pause

Example

The numerical semigroup S = ⟨3, 7, 11⟩ is irreducible.

pause

⟨3, 7, 11⟩

⟨3, 7, 8⟩

⟨3, 5, 7⟩⟨3, 4⟩

⟨3, 4, 5⟩

⟨2, 3⟩

N
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Definition

Let S be a numerical semigroup. Let g(S) denote the genus of S.
• We say that S is symmetric if g(S) = 1+F(S)

2 .

• We say that S is pseudo-symmetric if g(S) = 2+F(S)
2 .

pause

Example

S = ⟨3, 5⟩ = {0, 3, 5, 6, 8, 9,→}.

pause We have G(S) = {1, 2, 4, 7} so, g(S) = 4. Note F(S) = 7.
pause Thus, S is Symmetric.

pause

Example

S = ⟨3, 7, 11⟩ = {0, 3, 6, 7, 9, 10, 11,→}.

pause We have G(S) = {1, 2, 4, 5, 8} so, g(S) = 5. Note F(S) = 8.
pause Thus, S is Pseudo-symmetric.Naufil Sakran (Tulane) March 25, 2024 8 / 37



Theorem

Let S be an irreducible numerical semigroup. Then S is either symmetric
or pseudo-symmetric. Moreover, every symmetric or pseudo-symmetric
semigroup are irreducible.
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Applications

• Let S be a numerical semigroup. Let K be algebraically closed and
define K[S] = ⊕s∈SKts . Consider the ring K[[S]].
[Kun70] showed that K[[S]] is a Gorenstein ring if and only if S is
symmetric.
pause Remark: A Noetherian ring R is Gorenstein if R has finite
injective dimension as an R-module.
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Unipotent Numerical Semigroups

Let

U(n,N) :=



1 x12 x13 · · · x1n
0 1 x23 · · · x2n
...

...
...

. . .
...

0 0 0 · · · 1

 : {xij}1<i<j<n ∈ N


pause We fix a finitely generated monoid G ⊆ U(n,N).
pause A subset S ⊆ G is a unipotent numerical semigroup if

• 1n ∈ S.
• If A,B ∈ S then AB ∈ S.
• Complement of S in G is finite.
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Let us fix G = P(n,N) where

P(n,N) :=



1 x12 x13 · · · x1n
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 : {x1j}1<j≤n ∈ N

 (∼= Nn−1)
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Example (k-th Fundamental monoid)

Let

Pk(n) := {(x1j)1<j≤n ∈ P(n) : x1j ≥ k for some 1 > j ≤ n} ⊆ P(n).

pause

Figure: This is P5(3)
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Example

Let S ⊆ P(3) and consider S plotted as

Figure: S = ⟨(1, 1), (2, 1), (1, 2), (4, 1), (1, 4),P5⟩
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Notation

1 Let GU denote U(n,N) and GP denote P(n,N). Collectively we
denote them by G.

2 We let Gk denote the corresponding k-th Fundamental monoid in GU

or GP.
pause

3 An asterisk on a set denote the set minus the identity element e.g.
G∗ = G\1n where 1n denote the n × n identity matrix.

4 We will denote an arbitrary Unipotent Numerical Monoid in G by S.
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Invariants

Invariants

Let S be a unipotent numerical monoid in G.

• Gap set G(S) is the set of elements of the complement of S in G.
Genus g(S) = |G(S)|.

• Generating number r(S) = min{k ∈ N : Gk ⊆ S}.
pause

• Sporadic elements N(S) := S\Gr(S) and n(S) = |N(S)|.
• Minimal generating set of S is denoted by e(S).
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Example

Let S = ⟨(1, 1), (1, 2), (1, 4), (2, 1), (4, 1)⟩ ⊔ G5 in G = GP = P(3,N).

(0, 0) (5, 0) (6, 0) (7, 0) (8, 0) (9, 0)

(0, 5)

(0, 6)

(0, 7)

(0, 8)

(0, 9)

(5, 1)

(1, 5)

(2, 1)

(1, 2)

(4, 1)

(1, 4)

(1, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 2)

(3, 3)

(3, 4)

(4, 2)

(4, 3)

(4, 4)

r(S) = 5, g(S) = 10, e(S) = 17, n(S) = 15
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Definition

Let S be a unipotent numerical monoid in G. The different types of
Frobenius sets in S are defined as follows:

• The left Frobenius set of S is defined as

Fl(S) := {A ∈ G : A /∈ S and AG∗ ⊆ S}.

pause

• The right Frobenius set of S is defined as

Fr (S) := {A ∈ G : A /∈ S and G∗A ⊆ S}.

• The two-sided Frobenius set of S is defined as

Ft(S) := {A ∈ G : A /∈ S and {AG∗,G∗A} ⊆ S}.

Remark: If G = GP, then all the three types of Frobenius sets coincides.
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Definition

Let S be a unipotent numerical monoid in G. The different types of
Pseudo-Frobenius sets in S are defined as follows:

• The left Pseudo-Frobenius set of S is defined as

PFl(S) := {A ∈ G : A /∈ S and AS∗ ⊆ S}.

pause

• The right Pseudo-Frobenius set of S is defined as

PFr (S) := {A ∈ G : A /∈ S and S∗A ⊆ S}.

• The two-sided Pseudo-Frobenius set of S is defined as

PFt(S) := {A ∈ G : A /∈ S and {AS∗,S∗A} ⊆ S}.

Remark: If G = GP, then all the three types of Pseudo-Frobenius sets
coincides.
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Definition

A unipotent numerical monoid S in G is said to be irreducible if it cannot
be expressed as the intersection of two distinct unipotent numerical
monoids properly containing S.
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Example (Not Irreducible)

Let S = ⟨(1, 1), (1, 2), (1, 4), (2, 1), (4, 1)⟩ ⊔ G5 in G = GP = P(3,N).

(0, 0)

(2, 1)

(1, 2)

(4, 1)

(1, 4)

(1, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 2)

(3, 3)

(3, 4)

(4, 2)

(4, 3)

(4, 4)

(4, 0)

(3, 1)

(1, 3)

(0, 4)

(3, 0)

(0, 3)

pause
F(S) = {(0, 4), (1, 3), (3, 1), (4, 0)}, PF(S) = F(S) ∪ {(0, 3), (3, 0)}
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Example (Irreducible)

Let S = ⟨(1, 1), (2, 0), (2, 2), (3, 0), (3, 1)⟩ ⊔ G4 in G = GP = P(3,N).

(0, 0) (2, 0)

(2, 2)

(3, 1)

(3, 0)

(1, 1)

(3, 2)

F(S) = {(3, 2)}, PF(S) = F(S)
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GP

T11 T10

T8 T9

T7 T6 T5

T4 T3 T2

T1

S
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Definition

Let S be an irreducible unipotent numerical monoid in G.

• Then S is called symmetric if for every A ∈ G\S, we have
Ft(S) ∩ (AS ∩ SA) ̸= ∅.
pause

• Then S is called pseudo-symmetric if for every A ∈ G\S, we have at
least one of the following 2 cases:

1 We have A2 ∈ Ft(S).
2 We have Ft(S) ∩ (AS ∩ SA) ̸= ∅.
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Symmetric Example

Example

Let S = ⟨(1, 1), (2, 0), (2, 2), (3, 0), (3, 1)⟩ ⊔ G4 in G = GP = P(3,N).

(0, 0) (2, 0)

(2, 2)

(3, 1)

(3, 0)

(1, 1)(0, 1)

(1, 0)

(2, 1)

(0, 2) (1, 2) (3, 2)
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Pseudo-Symmetric Example

Example

Let S = ⟨(1, 2), (2, 0), (2, 1)⟩ ⊔ G3 in G = GP = P(3,N).

(2, 0)

(2, 1)

(1, 2)

(1, 0)

(0, 1)

(0, 2) (2, 2)

(1, 1)
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Observation

Let S be a unipotent numerical monoid in G. If S is irreducible then
|Fl(S)| = |Fr (S)| = |Ft(S)| = 1

pause

Lemma (Can, S. 23)

Let S be a unipotent numerical monoid in G. If |F(S)| = 1 for any one
type of Frobenius set, then the following statements are equivalent.

• S is irreducible.
pause

• S is maximal with respect to set inclusion in the set of unipotent
numerical monoid S such that F(S) ∩ T = ∅.

pause Furthermore, if |Fl(S)| = |Fr (S)| = |Ft(S)| = 1, then we can add
the following equivalent statement to the above list.

• S is maximal with respect to set inclusion in the set of unipotent
numerical monoid S such that F(S) = F(T ).
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Theorem (Can, S. 23)

Let S be a unipotent numerical monoid in G. If one of the following
conditions holds true, then S is irreducible.

• If |Fl(S)| = 1 and for every A ∈ G\S, we have Fl(S) ∩ AS ≠ ∅.
• If |Fr (S)| = 1 and for every A ∈ G\S, we have Fl(S) ∩ SA ̸= ∅.
• If |Ft(S)| = 1 and for every A ∈ G\S, we have
Fl(S) ∩ (AS ∩ SA) ̸= ∅.

pause Remark: This shows that the condition of irreducibility in
symmetricity can be dropped and be replaced by |F(S)| = 1.
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Main Result

Theorem (Can, S. 23)

Let S be a unipotent numerical monoid. If S is irreducible, then S is
either symmetric or pseudo-symmetric.
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Note that for symmetric numerical semigroups, we had the definition to be
g(S) = 1+F(S)

2 . We have an equivalent description for unipotent numerical
monoid.
pause We introduce the partial the following partial order on G. Let
A,B ∈ G, then

A ≤G,t B ⇐⇒ {BA−1,A−1B} ⊆ G.

pause For example, if G = GP = P(3,N) then1 1 2
0 1 0
0 0 1

 ≤G,t

1 3 2
0 1 0
0 0 1

 as

1 3 2
0 1 0
0 0 1

1 1 2
0 1 0
0 0 1

−1

=

1 2 0
0 1 0
0 0 1
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Proposition (Can, S. 23)

Let S be a unipotent numerical monoid in G such that |Ft(S)| = 1. Then
we have

|n(S, F,⪯)| = g(S)

where
n(S, F,⪯) := {B ∈ S : 1n ≤G,t B ≤G,t F}
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Future directions & problems

1 Connection to commutative algebra.

2 Characterize irreducibility with respect to the set of divisors

D(X ) := {A ∈ S : A ≤S,t X}.

3 Derive connection to Weierstrass semigroup of multiple points on a
curve X .

4 Connection to algebraic coding theory.
pause

5 We look forward to generalizing it to linear algebraic groups. We
know that G = R⋉U(n).
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THANK YOU!!!
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