Math 6051/3051: Recitation 10

Naufil Sakran

Do all of the following problems.

- (1) Which of the following continuous functions are uniformly continuous on the specified set? Justify your answers.
 - $f(x) = x^{17} \sin(x) e^x \cos(3x)$ on $[0, \pi]$, Sol: Since f(x) is continuous on the closed interval $[0, \pi]$, it implies f(x) is uniformly continuous on $[0, \pi]$
 - $f(x) = \sin \frac{1}{x^2}$ on (0, 1], Sol: Consider the sequence $x_n = \frac{2}{\sqrt{(2n+1)\pi}}$. Now since $x_n \to 0$, it implies for all $\delta > 0$ there exists N such that for all n, m > N, we have $|x_n - x_m| < \delta$. But then $|f(x_n) - f(x_m)| = |(-1)^n - (-1)^m|$, which implies that f is not uniformly continuous.
 - $f(x) = x^2 \sin \frac{1}{x}$ on (0, 1]. Sol:

$$-\lim_{x \to 0} x^2 \le \lim_{x \to 0} x^2 \sin \frac{1}{x} \le \lim_{x \to 0} x^2$$
$$0 \le \lim_{x \to 0} x^2 \sin \frac{1}{x} \le 0$$

which implies $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$. Since the function can be extended to a continuous function on [0, 1], this implies f is uniform on (0, 1].

• $f(x) = \frac{1}{x-3}$ on $(4, \infty)$. Sol: Let $\epsilon > 0$. Now, for $x, y \in (4, \infty)$, we have

$$\frac{1}{x-3} - \frac{1}{y-3} \bigg| = \bigg| \frac{y-x}{(x-3)(y_3)} \bigg|$$
$$= \frac{1}{(x-3)(y-3)} |x-x| + \frac{1}{(x-3)(y-3$$

Now since $\frac{1}{(x-3)(y-3)} \leq 1$ for $x, y \in (4, \infty)$, we take $|x-y| < \delta = \epsilon$ and have $|f(x) - f(y)| < \epsilon$. So, f is uniformly continuous.

|y|

(2) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. Sol:

Suppose on the contrary that f is not bounded. So, there exists a sequence x_n in S such that $f(x_n)$ diverges. By Weierstrass/Bolzano, there exists a convergent subsequence (x_{n_k}) in (x_n) . Let $x_{n_k} \to x$. But then since f is uniform, there exists an extension \tilde{f} of f on $\{S \cup \{x\}\}$ such that $f(x_{n_k}) \to \tilde{f}(x)$. In particular, $(f_{x_{n_k}})$ is bounded implying that $(f(x_n))$ is bounded, a contradiction. (3) Let $f(x) = \sqrt{x}$ on (0, 1]. Show that $\frac{df(x)}{dx}$ is unbounded on (0, 1] but f is nevertheless uniformly continuous on (0, 1]. Sol:

f(x) is uniformly continuous on (0,1] since f can be extended to a continuous function on [0,1] by putting f(0) = 0. Now, $\frac{df(x)}{dx} = \frac{1}{2\sqrt{x}}$. Choosing the sequence $x_n = \frac{1}{2n^2}$, we have $\frac{df(x_n)}{dx}$ unbounded.

(4) Let f be a continuous function on [a.b]. Show that the function f^* defined as

$$f^*(x) = \sup\{f(y) : a \le y \le x\},\$$

for $x \in [a, b]$, is an increasing continuous function on [a, b]. Sol:

The function f^* is increasing as for any $x, y \in [a, b]$ such that $x \leq y$, we have

$$\sup\{f(t) : a \le t \le x\} \le \sup\{f(t) : a \le t \le y\},\$$

implying that f^* is increasing on [a, b]. Now we show f^* is continuous on [a, b]. First of all, we know that f is uniformly continuous on [a, b] (by theorem in the class). Now let $\epsilon > 0$. There exists $\delta > 0$ such that for any $x, y \in [a, b]$, whenever $|x - y| < \delta$, we have $|f(x) - f(y)| < \frac{\epsilon}{3}$. Suppose $x \leq y$, then there exists $s, t \in [a, b]$ such that f * (x) = s and f * (y) = t. We have the direct inequality $s \leq x \leq t \leq y$. Now,

$$|f^*(x) - f^*(y)| = |f(s) - f(t)|$$

$$\leq |f(s) - f(x)| + |f(x) - f(y)| + |f(y) - f(t)|$$

Note that, by uniform continuity, $|f(x) + f(y)| < \epsilon/3$ and $|f(y) - f(t)| < \epsilon/3$. Furthermore, observe that $|f(s) - f(x)| \le |f(t) - f(x)|$. Also, by uniform continuity, we have $|f(t) - f(x)| < \epsilon/3$. Thus,

$$|f^*(x) - f^*(y)| = \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Hence, $f^*(x)$ is continuous on [a, b].