Math 6051/3051: Recitation 8 Naufil Sakran

Do all of the following problems.

- (1) Determine whether the following series converges or diverges. If it converge, show why.
 - $\sum_{n \neq +3} \frac{n!}{n^4 + 3}$. Sol: Diverges as $\frac{n!}{n^4 + 3} \to \infty$ • $\sum_{n=2}^{\infty} \frac{1}{\log n}$. Sol: Diverges as $\frac{1}{n} < \frac{1}{\log n}$, implying that $\sum \frac{1}{n} < \sum \frac{1}{\log n}$ and $\sum \frac{1}{n}$ diverges. • $\sum_{n \neq 1} \frac{n^2}{n!}$. Sol: Converges as $\frac{n^2}{n!} \le \frac{n^2}{n^n} = \frac{1}{n^{n-2}} \le \frac{1}{n^2}$. implying that $\sum \frac{n^2}{n!} \le \sum \frac{1}{n^2}$. • $\sum_{n \neq 1} \frac{1}{\sqrt{n!}}$. Sol:
 - **Sol:** Converges as $\frac{1}{\sqrt{n!}} \le \frac{1}{(n!)^{\frac{2}{n}}} \le \frac{1}{(n^n)^{\frac{2}{n}}} \le \frac{1}{n^2}$.
- (2) Determine which of the following series converge. Justify your answers.
 - $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \log n}$. Sol: Since, $\frac{1}{n \log n} \le \frac{1}{\sqrt{n} \log n}$, we test $\sum \frac{1}{n \log n}$. Using the integral test $\int_{2}^{\infty} \frac{1}{x \log x} dx = \log \log x |_{2}^{\infty}$ $= \infty$

So, $\sum \frac{1}{\sqrt{n} \log n}$ diverges.

• $\sum_{n=1}^{\infty} \frac{\log n}{n^2}$. **Sol:**

$$\int_{2}^{\infty} \frac{\log x}{x^2} dx = \left(-\frac{\log x}{x} + \int \frac{1}{x^2} dx\right)_{2}^{\infty}$$
$$= \lim_{b \to \infty} \left(-\frac{\log x}{x} - \frac{1}{x} dx\right)_{2}^{b}$$
$$= \lim_{b \to \infty} \left(-\frac{\log b}{b} - \frac{1}{b} dx\right) + \frac{\log 2}{2} + \frac{1}{2}$$
$$= \frac{\log 2}{2} + \frac{1}{2}$$

So, $\sum_{n=1}^{\infty} \frac{\log n}{n^2}$ converges.

• $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}(\log n)(\log \log n)}$. Sol:

$$\int_{2}^{\infty} \frac{1}{x(\log x)(\log \log x)} dx = \int_{2}^{\infty} \frac{1}{x(\log x)(\log \log x)} dx$$
$$= \int_{2}^{\infty} \frac{1}{u(\log u)} du$$
$$= \log v |_{2}^{\infty}$$
$$= \infty.$$

Thus, since $\sum_{n=2}^{\infty} \frac{1}{n(\log n)(\log \log n)} \leq \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}(\log n)(\log \log n)}$ and $\sum_{n=2}^{\infty} \frac{1}{n(\log n)(\log \log n)}$ diverges implies $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}(\log n)(\log \log n)}$ diverges.

(3) Prove that the following function is continuous at x_0 , using the $\epsilon - \delta$ definition.

$$f(x) = \sqrt{x}, \quad x_0 = 0.$$

Sol:

Let $\epsilon > 0$. Choosing $\delta = \epsilon^2$, we have whenever $|x| < \delta$ implies $|\sqrt{x}| < \epsilon$. So, f is continuous at $x_0 = 0$.

(4) For each non-zero rational number x, write x as ^p/_q, where p, q are integers with no common factors and q > 0. Define f(x) = ¹/_q. Also define f(0) = 1 and f(x) = 0 for all x ∈ ℝ\Q. For instance, f(x) = 1 for every integer x and f(¹/₂) = (-¹⁵/₂) = ¹/₂ etc. Show that f is continuous at each point of ℝ\Q and discontinuous at each point of Q. Sol:

Let $x \in \mathbb{R} \setminus \mathbb{Q}$. Then writing x in a decimal form, we have

 $x = a_0.a_1a_2a_3a_4\cdots$

Let (r_n) be a sequence converging to x. Without loss of generality, we can take (r_n) to be a sequence of rational numbers since f(t) = 0 for $t \in \mathbb{R}\setminus\mathbb{Q}$. Now consider the sequence (y_k) defined as $y_k = a_0.a_1a_2\cdots a_k$. Since, $r_n \to x$, there exists a subsequence $(t_s) \subseteq (y_k)$ and a large N such that for $(t_s) = (r_n)_{n \geq N}$. Now, since $f(y_k) \to 0 = f(x)$ implies $f(t_s) \to 0 = f(x)$. In particular, $f(r_n) \to 0 = f(x)$. Since, (r_n) was an arbitrary sequence, we have that f is continuous at every irrational point x.

Now let $x_0 \in \mathbb{Q}$ and $0 < \epsilon < f(x_0)$. Now for any $\delta > 0$ and any irrational number y such that $|y - x_0| < \delta$, we have $|f(x_0) - f(y)| = f(x_0) > \epsilon$. Thus, f is discontinuous at every rational point.