Math 6051/3051: Recitation 9

Naufil Sakran

Do all of the following problems.

(1) Let $S \subseteq \mathbb{R}$ and suppose there exists a sequence (x_n) in S converging to a number $x \notin S$. Show that there exists an unbounded continuous function on S. Sol:

Let (x_n) be a sequence in S converging to $x_0 \notin S$. Consider the function $f(y) = \frac{1}{y-x_0}$. We show that f is unbounded. Let M be a large number. Then choose $\delta < \frac{1}{M}$ such that $|x_n - x_0| < \delta$. But then $|f(x_n)| = \frac{1}{|x_n - x_0|} > M$. This implies f is an unbounded continuous function.

- (2) Let f and g be continuous function on [a, b] such that f(a) ≥ g(a) and f(b) ≤ g(b). Prove that f(x₀) = g(x₀) for at least one x₀ ∈ [a, b].
 Sol:
 Consider the function h(x) = f(x) g(x). Clearly h is continuous. Furthermore, h(a) ≥ 0 and h(b) ≤ 0. By intermediate value theorem, there exists x₀ ∈ [a, b] such that h(x₀) = 0, which implies f(x₀) = g(x₀).
- (3) Suppose f is a real-valued continuous function on \mathbb{R} and f(a)f(b) < 0 for some $a, b \in \mathbb{R}$. Prove that there exists x between a and b such that f(x) = 0Sol:

Suppose f(a) < 0 and f(b) > 0. By intermediate value theorem, there exists $x_0 \in [a, b]$ such that $f(x_0) = 0$. Similarly, if f(a) > 0 and f(b) < 0. By intermediate value theorem, there exists $x_0 \in [a, b]$ such that $f(x_0) = 0$.

(4) Let

$$f(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Show that f(x) is discontinuous at x = 0. Sol:

Consider the sequence $x_n = \frac{2}{(2n+1)\pi}$. Clearly $x_n \to 0$. But $f(x_n) = \sin \frac{(2n+1)\pi}{2} = (-1)^n$. So, $x_n \to 0$ but $\lim_{n\to\infty} f(x_n) = DNE$. So, f is discontinuous at 0.