Math 6091/3091: Recitation 1 Naufil Sakran

Do any **all** of the following problems.

- (1) (2 points) Please state whether the following sets with their respective operations forms a group or not. If they do not form a group, please indicate which group axiom do they violate.
 - (a) The set of rational numbers with respect to addition $(\mathbb{Q}, +)$.
 - (b) The set of positive rational numbers with respect to multiplication $(\mathbb{Q}_{>0}, +)$.
 - (c) The set of rational numbers with respect to operation * where * is defined as: for $a, b \in \mathbb{Q}$, $a * b = \frac{a+b}{5}$.
 - (d) The set of real numbers with respect to the operation * where * is defined as: for $a, b \in \mathbb{R}$, $a * b = \min\{a, b\}$.
 - (e) The set of real numbers with respect to the operation * where * is defined as: for $a, b \in \mathbb{R}$, a * b = a + b + ab.
- (2) (3 points) Let $G = \{a \in \mathbb{R} \mid 0 \le a < 1\}$ and for $a, b \in G$, let a * b be the fractional part of a + b. For example

 $0.3 * 0.9 = 0.2, \quad 0.4 * 0.22 = 0.62, \quad 0.7 * 0.555 = 0.255, \quad 0.3 * 0.7 = 0.$

(a) Show that (G, *) forms an abelian group.

(b) Solve the equation 0.3 * X = 0.8.

- (3) (2 points) Please state whether the following sets with their respective operations forms a ring or not. If they do not form a ring, please indicate which axiom do they violate.
 - (a) The set $(P(x), +, \cdot)$ where P(x) denote the set of polynomials in the variable x, + denote usual polynomial addition and \cdot denote usual polynomial multiplication.

(b) The set $(2\mathbb{Z}, +, \cdot)$ where $2\mathbb{Z}$ denote the set of even integers, + denote usual addition and \cdot denote usual multiplication.

- (4) (3 points) Let $L(x) = \{\frac{f(x)}{g(x)} \mid f(x), g(x) \in P(x)\}$ where P(x) is the denote the set of set of polynomials in the variable x. Define the usual addition and multiplication operation on L(x).
 - (a) Show that $(L(x), +, \cdot)$ forms a field.

(b) Solve the equation

$$\frac{3x+2}{5x^2+3x+1}X - \frac{x^3}{x+2} = \frac{9x+5}{x^{10}}.$$

for X.