Math 6091/3091: Recitation 9 Naufil Sakran

Do **all** of the following problems.

(1) (2 points) Let V = C[0,1] be the vector space consisting of continuous functions on the interval [0,1]. Define

$$\langle f,g\rangle = \int_0^1 f(t)g(t)dt.$$

(a) Show that this function forms an inner product on V.

Sol:

Let $f, g, h \in V$ and $a \in \mathbb{R}$ then

$$\langle af + g, h \rangle = \int_0^1 (af(x) + g(x))h(x)dx = a \int_0^1 f(x)h(x)dx + \int_0^1 g(x)h(x)dx = a\langle f, h \rangle + \langle g, h \rangle$$
 It is clear that

t is clear that

$$\langle f,g\rangle = \langle g,f\rangle$$

Finally

$$\langle f, f \rangle = \int_0^1 f^2(x) dx.$$

Now as $f(x)^2$ is a non negative function so its $\int_0^1 f^2(x) dx \ge 0$. Furthermore it is zero if and only if $f^2 = 0 \iff f = 0$. Therefore, $\langle \cdot, \cdot \rangle$ forms an inner product.

(b) Find the angle between the elements $f(x) = \sin x$ and $g(x) = \cos x$.

Sol:

$$\cos \theta = \frac{\int_0^1 \sin x \cos x dx}{\sqrt{\int_0^1 \sin^2 x dx} \cdot \sqrt{\int_0^1 \cos^2 x dx}} = \frac{\frac{1}{2} \sin 1}{\sqrt{\frac{1}{2} - \frac{1}{4} \sin 2} \cdot \sqrt{\frac{1}{2} + \frac{1}{4} \sin 2}}$$

(2) (2 points) Let $V = P_n(x)$ be the vector space consisting of polynomials of degree at most n with coefficients in \mathbb{R} . Fix x_0, x_1, \dots, x_n distinct real numbers. Define

$$\langle f(x), g(x) \rangle = f(x_0)g(x_0) + f(x_1)g(x_1) + \dots + f(x_n)g(x_n).$$

(a) Show that this function forms an inner product on V.

Sol:
Let
$$f, g, h \in V$$
 and $\alpha \in \mathbb{R}$. Now,
 $\langle \alpha f + g, h \rangle = (\alpha f(x_0) + g(x_0))h(x_0) + \dots + (\alpha f(x_n) + g(x_n))h(x_n)$
 $= \alpha f(x_0)h(x_0) + \dots + \alpha f(x_n)h(x_n) + g(x_0)h(x_0) + \dots + g(x_n)h(x_n)$
 $= \langle \alpha f, h \rangle + \langle g, h \rangle.$

It is clear that $\langle f, g \rangle$. Finally,

$$\langle f, f \rangle = f(x_0)^2 + \dots + f(x_n)^2 \ge 0.$$

Now if $\langle f, f \rangle = 0$, implies $f(x_0)^2 + \cdots + f(x_n)^2 = 0$. This is only true if and only if $f(x_i) = 0$ for all $i = 1, \dots, n$. But then as f is a degree n polynomial, it has at most n zeros. But then this implies f has n + 1 zeros. This forces f = 0.

(b) Let $V = P_2(x)$ and take $x_0 = -2, x_1 = 0$ and $x_2 = 2$. Compute $\langle f, g \rangle$ where $f = 1 + x^2$ and g = 1 - x. Find the angle between the above f and g.

Sol:

$$\begin{split} \langle f,g\rangle &= f(x_0)g(x_0) + f(x_1)g(x_1) + f(x_2)g(x_2) = 5\cdot 3 + 1\cdot 1 + 5\cdot (-1) = 11, \\ \langle f,f\rangle &= 5^2 + 1^2 + 5^2 = 51 \\ \langle g,g\rangle &= 3^2 + 1^2 + (-1)^2 = 11 \end{split}$$

So,

$$\theta = \cos^{-1} \langle \frac{11}{\sqrt{51}\sqrt{11}} \rangle$$

- (3) (2 points) Let W be a subspace in R^4 spanned by $w_1 = (1, 2, 1)$ and $w_2 = (1, -1, -1)$.
 - (a) Find the space W^{\perp} .

Sol:

$$W^{\perp} = \left\langle \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix} \right\rangle$$

(b) Let u = (1, 0, 0). Write *u* in terms of $proj_W(u) + proj_{W^{\perp}}(u)$.

Sol:

$$proj_{W^{\perp}}(u) = \frac{\langle (1,0,0), (1,-2,3)}{||(1,-2,3)||^2}(1,-2,3) = \frac{1}{14}(1,-2,3).$$

Now,

$$proj_W(u) = u - proj_{W^{\perp}}(u) = \frac{1}{14}(-13, 2-3) \in W.$$

So,

$$u = \frac{1}{14}(-13, 2-3) + \frac{1}{14}(1, -2, 3)$$

(4) (3 points) Let W₁ and W₂ be subspaces of ℝⁿ.
(a) Show that (W₁ + W₂)[⊥] = W₁[⊥] ∩ W₂[⊥]

Sol:

 $x \in (W_1 + W_2)^{\perp}$ if and only if $\langle x, w_1 \rangle = 0$ and $\langle x, w_2 \rangle = 0$ for all $w_1 \in W_1$ and $w_2 \in W_2$. This happens if and only if $x \in W_1^{\perp}$ and $x \in W_2^{\perp}$ which is equivalent to $x \in W_1^{\perp} \cap W_2^{\perp}$.

(b) Show that $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$

Sol:

We assume the result of part (c). Then this follows from part (a).

$$(W_1 \cap W_2)^{\perp} = ((W_1^{\perp} + W_2^{\perp})^{\perp})^{\perp}$$

= $W_1^{\perp} + W_2^{\perp}$.

(c) Show that $(W_1^{\perp})^{\perp} = W_1$.

Sol: As W^{\perp} is the orthogonal complement of W and $\dim W + \dim W^{\perp} = \dim V$ i.e. $V = W + W^{\perp}$. Therefore, the orthogonal complement of W^{\perp} , denoted by $(W_1^{\perp})^{\perp}$ must exactly be W. So, $(W_{\star}^{\perp})^{\perp} = W$.

$$(W_1^\perp)^\perp = W.$$